低圧マイクロ波放電プラズマのN2 2+バンドの放射と温度特性

健二 澁澤, 賢人 舩津, 紘行 白井, 文雄 高草木
{"title":"低圧マイクロ波放電プラズマのN2 2+バンドの放射と温度特性","authors":"健二 澁澤, 賢人 舩津, 紘行 白井, 文雄 高草木","doi":"10.2322/JJSASS.55.232","DOIUrl":null,"url":null,"abstract":"Spectroscopic measurements of microwave-discharged low-pressure nitrogen plasmas were made in a tube with a diameter of 9.5mm and length of 42mm. Intense radiation of N2 2+ bands and weak radiations of N2+ 1-, N2 1+, and NO γ bands were observed. Unique intensity distribution of N2 2+ bands with high vibrational levels was observed as in the arc-discharged micro-air plasma-jets. Rotational and vibrational temperatures were determined by a spectral matching method with N2 2+ (0, 2) and (1, 3) bands. The vibrational state of the plasma was also investigated by the N2 2+ band intensity. As the experimental spectra could not be reconstructed by a usual equilibrium radiation theory with one rotational temperature, the theoretical spectra were constructed with the effects of predissociation and theoretical non-Boltzmann rotational population distribution, and were compared with the experimental ones. As a result, it was found that the vibrational and rotational temperatures were dependent on the theoretical model for rotational population distribution, that the rotational temperature was dependent on the vibrational states, and that the plasmas were in the vibrational non-equilibrium state.","PeriodicalId":144591,"journal":{"name":"Journal of The Japan Society for Aeronautical and Space Sciences","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Japan Society for Aeronautical and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/JJSASS.55.232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Spectroscopic measurements of microwave-discharged low-pressure nitrogen plasmas were made in a tube with a diameter of 9.5mm and length of 42mm. Intense radiation of N2 2+ bands and weak radiations of N2+ 1-, N2 1+, and NO γ bands were observed. Unique intensity distribution of N2 2+ bands with high vibrational levels was observed as in the arc-discharged micro-air plasma-jets. Rotational and vibrational temperatures were determined by a spectral matching method with N2 2+ (0, 2) and (1, 3) bands. The vibrational state of the plasma was also investigated by the N2 2+ band intensity. As the experimental spectra could not be reconstructed by a usual equilibrium radiation theory with one rotational temperature, the theoretical spectra were constructed with the effects of predissociation and theoretical non-Boltzmann rotational population distribution, and were compared with the experimental ones. As a result, it was found that the vibrational and rotational temperatures were dependent on the theoretical model for rotational population distribution, that the rotational temperature was dependent on the vibrational states, and that the plasmas were in the vibrational non-equilibrium state.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N2 2+带低压微波放电等离子体的辐射和温度特性
在直径为9.5mm、长度为42mm的管中对微波放电低压氮等离子体进行了光谱测量。观察到N2 2+波段的强辐射和N2+ 1-、N2 1+和NO γ波段的弱辐射。在电弧放电的微空气等离子体射流中,观察到具有高振动水平的N2 +条带的独特强度分布。通过n_2 +(0,2)和(1,3)波段的光谱匹配方法确定了旋转和振动温度。等离子体的振动状态也通过N2 +带强度进行了研究。由于常规的平衡辐射理论无法在一个旋转温度下重建实验光谱,因此考虑了预解离和理论非玻尔兹曼旋转种群分布的影响,构建了理论光谱,并与实验光谱进行了比较。结果表明,等离子体的振动和旋转温度依赖于旋转居群分布的理论模型,旋转温度依赖于振动态,等离子体处于振动非平衡态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
超小型衛星「鳳龍弐号」の熱設計・検証手法と軌道データ解析 D-SEND#2の制御系設計 ϕ3.2mm BKNO3ペレットの低圧下における燃焼速度の取得 直交格子法における埋め込み境界法とCut-Cell法の比較ー壁面近傍での圧力・せん断応力分布の検証ー ボルテックス・ジェネレーターによる翼前縁フラップ ヒンジラインの離制御に関する実験研究
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1