Robotic simulation using natural language commands

D. Thenmozhi, R. Seshathiri, K. Revanth, B. Ruban
{"title":"Robotic simulation using natural language commands","authors":"D. Thenmozhi, R. Seshathiri, K. Revanth, B. Ruban","doi":"10.1109/ICCCSP.2017.7959814","DOIUrl":null,"url":null,"abstract":"Robots are inevitable these days,so naive users should not find difficult to interact with robots. Since robots understand only RCL (Robot command language), we need a system which converts natural language commands into RCL. We use a semantic parser to address this problem of converting natural language commands to RCL that can be readily implemented in a robot execution system. Our system gets the natural language command from the user and converts it into RCL using tagging approach. This tagging operation is implemented using a trainer, which uses Hidden Markov Model approach. Using this tagged command the Parser builds the RCL. Then the RCL is converted to configurations which is the co-ordinates of the objects in a given spatial context. The validation of these configurations is performed using robotic simulator. We have used an annotated dataset to compare and evaluate our approach. Despite the fixed domain, the task is challenging as correctly parsing commands requires understanding spatial context.","PeriodicalId":269595,"journal":{"name":"2017 International Conference on Computer, Communication and Signal Processing (ICCCSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communication and Signal Processing (ICCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCSP.2017.7959814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Robots are inevitable these days,so naive users should not find difficult to interact with robots. Since robots understand only RCL (Robot command language), we need a system which converts natural language commands into RCL. We use a semantic parser to address this problem of converting natural language commands to RCL that can be readily implemented in a robot execution system. Our system gets the natural language command from the user and converts it into RCL using tagging approach. This tagging operation is implemented using a trainer, which uses Hidden Markov Model approach. Using this tagged command the Parser builds the RCL. Then the RCL is converted to configurations which is the co-ordinates of the objects in a given spatial context. The validation of these configurations is performed using robotic simulator. We have used an annotated dataset to compare and evaluate our approach. Despite the fixed domain, the task is challenging as correctly parsing commands requires understanding spatial context.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人仿真使用自然语言命令
如今,机器人是不可避免的,所以天真的用户应该不会觉得与机器人互动有什么困难。由于机器人只理解RCL(机器人命令语言),我们需要一个将自然语言命令转换为RCL的系统。我们使用语义解析器来解决将自然语言命令转换为可在机器人执行系统中轻松实现的RCL的问题。系统从用户处获取自然语言命令,并使用标记方法将其转换为RCL。该标记操作是使用训练器实现的,该训练器使用隐马尔可夫模型方法。使用这个带标签的命令,Parser构建RCL。然后将RCL转换为构型,即给定空间上下文中对象的坐标。使用机器人模拟器对这些配置进行验证。我们使用了一个带注释的数据集来比较和评估我们的方法。尽管有固定的领域,但这项任务具有挑战性,因为正确解析命令需要理解空间上下文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright form Copyright page Development of efficient VLSI architecture for speech processing in mobile communication Detection of sleep apnea from multiparameter monitor signals using empirical mode decomposition Utilization based prediction model for resource provisioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1