Low Speed Operation of Sensorless Estimators for Induction Machines using Extended, Unscented and Cubature Kalman Filter Techniques

Krisztián Horváth, D. Fodor
{"title":"Low Speed Operation of Sensorless Estimators for Induction Machines using Extended, Unscented and Cubature Kalman Filter Techniques","authors":"Krisztián Horváth, D. Fodor","doi":"10.1109/EDPE.2019.8883936","DOIUrl":null,"url":null,"abstract":"In this study, three feasible speed sensorless estimators of induction machines are presented by using extended, unscented and cubature Kalman filter algorithms. The estimators are based on an augmented non-linear state-space model of these machines, which describes the dynamics in stationary reference frame with six state variables. As an important part of the estimator design, an observability study is provided for the nonlinear model and an observability condition is formulated as well. The estimators are compared experimentally around zero stator frequency with respect to the speed estimation performance. However, the estimators are investigated only in open-loop and without external load disturbance.","PeriodicalId":353978,"journal":{"name":"2019 International Conference on Electrical Drives & Power Electronics (EDPE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrical Drives & Power Electronics (EDPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDPE.2019.8883936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this study, three feasible speed sensorless estimators of induction machines are presented by using extended, unscented and cubature Kalman filter algorithms. The estimators are based on an augmented non-linear state-space model of these machines, which describes the dynamics in stationary reference frame with six state variables. As an important part of the estimator design, an observability study is provided for the nonlinear model and an observability condition is formulated as well. The estimators are compared experimentally around zero stator frequency with respect to the speed estimation performance. However, the estimators are investigated only in open-loop and without external load disturbance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展、无气味和Cubature卡尔曼滤波技术的感应电机无传感器估计器低速运行
本文提出了三种可行的感应电机无速度传感器估计方法,分别采用扩展卡尔曼滤波算法、无气味卡尔曼滤波算法和培养卡尔曼滤波算法。该估计器基于这些机器的增广非线性状态空间模型,该模型描述了具有六个状态变量的静止参照系中的动力学。作为估计器设计的重要组成部分,对非线性模型进行了可观测性研究,并给出了可观测性条件。在定子频率为零的情况下,对估计器的速度估计性能进行了实验比较。然而,只研究了开环和无外部负载干扰下的估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Preliminary Design of Induction Machines Aided by Artificial Neural Networks Investigation of Induction Machine with Rotor-Bar Faults Comparison of Thermal Properties of the Magnetic Components of Interleaved DC/DC Converters Application of Hybrid Neural Network to Detection of Induction Motor Electrical Faults Design and Functional Demonstration of a 100 A Battery Testing Unit with Minimal Power Supply Load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1