Ordinary linear model estimation on a massively parallel SIMD computer

E. Kontoghiorghes
{"title":"Ordinary linear model estimation on a massively parallel SIMD computer","authors":"E. Kontoghiorghes","doi":"10.1002/(SICI)1096-9128(199906)11:7%3C323::AID-CPE425%3E3.0.CO;2-I","DOIUrl":null,"url":null,"abstract":"Efficient algorithms for estimating the coefficient parameters of the ordinary linear model on a massively parallel SIMD computer are presented. The numerical stability of the algorithms is ensured by using orthogonal transformations in the form of Householder reflections and Givens plane rotations to compute the complete orthogonal decomposition of the coefficient matrix. Algorithms for reconstructing the orthogonal matrices involved in the decompositions are also designed, implemented and analyzed. The implementation of all algorithms on the targeted SIMD array processor is considered in detail. Timing models for predicting the execution time of the implementations are derived using regression modelling methods. The timing models also provide an insight into how the algorithms interact with the parallel computer. The predetermined factors used in the regression fits are derived from the number of memory layers involved in the factorization process of the matrices. Experimental results show the high accuracy and predictive power of the timing models. Copyright 1999 John Wiley & Sons, Ltd.","PeriodicalId":199059,"journal":{"name":"Concurr. Pract. Exp.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurr. Pract. Exp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1096-9128(199906)11:7%3C323::AID-CPE425%3E3.0.CO;2-I","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Efficient algorithms for estimating the coefficient parameters of the ordinary linear model on a massively parallel SIMD computer are presented. The numerical stability of the algorithms is ensured by using orthogonal transformations in the form of Householder reflections and Givens plane rotations to compute the complete orthogonal decomposition of the coefficient matrix. Algorithms for reconstructing the orthogonal matrices involved in the decompositions are also designed, implemented and analyzed. The implementation of all algorithms on the targeted SIMD array processor is considered in detail. Timing models for predicting the execution time of the implementations are derived using regression modelling methods. The timing models also provide an insight into how the algorithms interact with the parallel computer. The predetermined factors used in the regression fits are derived from the number of memory layers involved in the factorization process of the matrices. Experimental results show the high accuracy and predictive power of the timing models. Copyright 1999 John Wiley & Sons, Ltd.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模并行SIMD计算机上的普通线性模型估计
提出了在大规模并行SIMD计算机上估计普通线性模型的系数参数的有效算法。采用Householder反射和给定平面旋转形式的正交变换计算系数矩阵的完全正交分解,保证了算法的数值稳定性。设计、实现并分析了分解过程中所涉及的正交矩阵重构算法。详细考虑了所有算法在目标SIMD阵列处理器上的实现。使用回归建模方法推导了用于预测实现执行时间的时间模型。时序模型还提供了一个洞察算法如何与并行计算机交互。回归拟合中使用的预定因子来源于矩阵分解过程中涉及的存储层数。实验结果表明,该定时模型具有较高的精度和预测能力。版权所有1999约翰威利父子有限公司
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The software architecture of a distributed problem-solving environment Extended semaphore operations A formal notation and tool for the engineering of CORBA systems Providing fine-grained access control for Java programs via binary editing A parallel language and its programming system for heterogeneous networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1