Differentially private geospatial data publication based on grid clustering

Dongni Yang, Songyan Li, Zhaobin Liu, Xinfeng Ye
{"title":"Differentially private geospatial data publication based on grid clustering","authors":"Dongni Yang, Songyan Li, Zhaobin Liu, Xinfeng Ye","doi":"10.1504/ijes.2019.102435","DOIUrl":null,"url":null,"abstract":"Collecting geospatial data from location-based services can provide location evidence while analysing spatial information. However, releasing location data may result in the disclosure of sensitive personal information. The adaptive grid method (AG) uses differential privacy to protect information. In AG, the algorithm uses two levels of grids over data domain. However, it does not take into account the data distribution. Usually, the accuracy will be reduced in response to long-range counting queries. In this paper, the adjacent grid cells with similar data density are clustered together. Laplace noise is added to the clusters created by the clustering of the grid cells. The noisy count obtained from the grid cells that form each cluster is evenly redistributed to the grid cells in the cluster. Extensive experiments on real-world datasets showed that the query accuracy of the proposed method is higher than the existing methods.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijes.2019.102435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Collecting geospatial data from location-based services can provide location evidence while analysing spatial information. However, releasing location data may result in the disclosure of sensitive personal information. The adaptive grid method (AG) uses differential privacy to protect information. In AG, the algorithm uses two levels of grids over data domain. However, it does not take into account the data distribution. Usually, the accuracy will be reduced in response to long-range counting queries. In this paper, the adjacent grid cells with similar data density are clustered together. Laplace noise is added to the clusters created by the clustering of the grid cells. The noisy count obtained from the grid cells that form each cluster is evenly redistributed to the grid cells in the cluster. Extensive experiments on real-world datasets showed that the query accuracy of the proposed method is higher than the existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于网格聚类的差分私有地理空间数据发布
从基于位置的服务中收集地理空间数据可以在分析空间信息的同时提供位置证据。但是,发布位置数据可能会导致个人敏感信息的泄露。自适应网格法(AG)利用差分隐私保护信息。在AG中,算法在数据域上使用两层网格。然而,它没有考虑到数据的分布。通常,在响应远程计数查询时,准确性会降低。本文将数据密度相近的相邻网格单元聚类在一起。将拉普拉斯噪声添加到由网格单元聚类产生的聚类中。从组成每个簇的网格单元中获得的噪声计数被均匀地重新分配到簇中的网格单元中。在实际数据集上的大量实验表明,该方法的查询精度高于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NITIDS: a robust network intrusion dataset Solution to the conformable fractional differential systems with higher order Flexible heuristic-based prioritised latency-sensitive IoT application execution scheme in the 5G era Selection gate-based networks for semantic relation extraction A combination classification method based on Ripper and Adaboost
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1