Exploiting Ensemble Classification Schemes to Improve Prognosis Process for Large for Gestational Age Fetus Classification

F. Akhtar, Jianqiang Li, Pei Yan, A. Imran, G. Shaikh, Chun Xu
{"title":"Exploiting Ensemble Classification Schemes to Improve Prognosis Process for Large for Gestational Age Fetus Classification","authors":"F. Akhtar, Jianqiang Li, Pei Yan, A. Imran, G. Shaikh, Chun Xu","doi":"10.1109/COMPSAC48688.2020.00-50","DOIUrl":null,"url":null,"abstract":"Large for gestational (LGA) means the fetus having an abnormal birth weight. It adheres severe complications during and after the maternal period. Therefore, this research presents an ensemble classification scheme using Chinese National Pre-Pregnancy Examination Program dataset to classify a fetus as an LGA or non-LGA based on provided Chinese LGA classification guidelines. Moreover, the proposed scheme is comprised of data cleansing and ensemble classification schemes that have drastically improved the LGA classification process with improved performance results compared to present published studies. Therefore, the recommended scheme can be utilized by healthcare professionals to build an enhanced and reliable LGA classification system.","PeriodicalId":430098,"journal":{"name":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC48688.2020.00-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Large for gestational (LGA) means the fetus having an abnormal birth weight. It adheres severe complications during and after the maternal period. Therefore, this research presents an ensemble classification scheme using Chinese National Pre-Pregnancy Examination Program dataset to classify a fetus as an LGA or non-LGA based on provided Chinese LGA classification guidelines. Moreover, the proposed scheme is comprised of data cleansing and ensemble classification schemes that have drastically improved the LGA classification process with improved performance results compared to present published studies. Therefore, the recommended scheme can be utilized by healthcare professionals to build an enhanced and reliable LGA classification system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用集成分类方案改善大胎龄胎儿分类的预后过程
大胎(LGA)是指胎儿有一个异常的出生体重。妊娠期间和产后会出现严重并发症。因此,本研究基于提供的中文LGA分类指南,提出了一种使用中国国家孕前检查计划数据集对胎儿进行LGA或非LGA分类的集成分类方案。此外,所提出的方案由数据清理和集成分类方案组成,与目前发表的研究相比,这些方案大大改进了LGA分类过程,并提高了性能。因此,建议的方案可以被医疗专业人员用来建立一个增强和可靠的LGA分类系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The European Concept of Smart City: A Taxonomic Analysis An Early Warning System for Hemodialysis Complications Utilizing Transfer Learning from HD IoT Dataset A Systematic Literature Review of Practical Virtual and Augmented Reality Solutions in Surgery Optimization of Parallel Applications Under CPU Overcommitment A Blockchain Token Economy Model for Financing a Decentralized Electric Vehicle Charging Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1