Massively Parallel Heuristic Search for Approximate Optimization Problems

A. Mahanti, C. J. Daniels, S. Ghosh, M. Evett, A. Pal
{"title":"Massively Parallel Heuristic Search for Approximate Optimization Problems","authors":"A. Mahanti, C. J. Daniels, S. Ghosh, M. Evett, A. Pal","doi":"10.1109/DMCC.1991.633159","DOIUrl":null,"url":null,"abstract":"Most admissible search algorithms fail to solve reallife problems because of their exponential time and storage requirements. Therefore, to quickljy obtain near-optimal solutions, the use of approximute algorithms and inadmissible heuristics are of practical interest. The use of parallel and distributed ahgorithms [l, 6, 8, 111 further reduces search complexity. I n this paper we present empirical results on a massively parallel search algorithm using a Connection .Machine CM-2. Our algorithm, PBDA', is based on the idea of staged search [9, lo]. Its execution time is directly proportional t o the depth of search, and solution quality is scalable with the number of processors. W e tested it on the 1Bpuzzle problem using both admissible and inadmissible heuristics. The best results gave an average relative error of 1.66% and 66% optimal solutions.","PeriodicalId":313314,"journal":{"name":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1991.633159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most admissible search algorithms fail to solve reallife problems because of their exponential time and storage requirements. Therefore, to quickljy obtain near-optimal solutions, the use of approximute algorithms and inadmissible heuristics are of practical interest. The use of parallel and distributed ahgorithms [l, 6, 8, 111 further reduces search complexity. I n this paper we present empirical results on a massively parallel search algorithm using a Connection .Machine CM-2. Our algorithm, PBDA', is based on the idea of staged search [9, lo]. Its execution time is directly proportional t o the depth of search, and solution quality is scalable with the number of processors. W e tested it on the 1Bpuzzle problem using both admissible and inadmissible heuristics. The best results gave an average relative error of 1.66% and 66% optimal solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近似优化问题的大规模并行启发式搜索
大多数可接受的搜索算法无法解决现实生活中的问题,因为它们的时间和存储需求呈指数级增长。因此,为了快速获得近似最优解,使用近似算法和不可容许启发式是有实际意义的。并行和分布式算法的使用[1,6,8,111]进一步降低了搜索复杂度。在本文中,我们给出了一个使用连接机CM-2的大规模并行搜索算法的实证结果。我们的算法PBDA是基于分阶段搜索的思想[9,10]。它的执行时间与搜索深度成正比,解决方案的质量随处理器数量的增加而增加。我们使用可接受的和不可接受的启发式方法对它进行了测试。最佳结果的平均相对误差为1.66%,最优解为66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Performance Environments for Parallel Systems Using Spanning-Trees for Balancing Dynamic Load on Multiprocessors Optimal Total Exchange on an SIMD Distributed-Memory Hypercube Structured Parallel Programming on Multicomputers Parallel Solutions to the Phase Problem in X-Ray Crystallography: An Update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1