A ranking method for social-annotation-based service discovery

D. Qu, Xudong Liu, Hailong Sun, Zicheng Huang
{"title":"A ranking method for social-annotation-based service discovery","authors":"D. Qu, Xudong Liu, Hailong Sun, Zicheng Huang","doi":"10.1109/SOSE.2011.6139099","DOIUrl":null,"url":null,"abstract":"With the rapid growth of Web services, service discovery becomes an important and difficult issue. Traditional UDDI-based and WSDL-based methods of service discovery have low precision, and semantic-based service discovery methods are usually inefficient and time-consuming. We observe that social annotations can optimize both precision and efficiency of service discovery. In this paper, we propose a social-annotation-based service discovery method by using a learning to rank method, and propose two algorithms, Query Annotation Relevance (QAR) and Service Annotation Ranking (SAR), to calculate the dynamic Query-dependent feature and the static Query-independent feature respectively. Our experiments show that our method is effective for improving service discovery performance.","PeriodicalId":218577,"journal":{"name":"Proceedings of 2011 IEEE 6th International Symposium on Service Oriented System (SOSE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 IEEE 6th International Symposium on Service Oriented System (SOSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOSE.2011.6139099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid growth of Web services, service discovery becomes an important and difficult issue. Traditional UDDI-based and WSDL-based methods of service discovery have low precision, and semantic-based service discovery methods are usually inefficient and time-consuming. We observe that social annotations can optimize both precision and efficiency of service discovery. In this paper, we propose a social-annotation-based service discovery method by using a learning to rank method, and propose two algorithms, Query Annotation Relevance (QAR) and Service Annotation Ranking (SAR), to calculate the dynamic Query-dependent feature and the static Query-independent feature respectively. Our experiments show that our method is effective for improving service discovery performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于社会注释的服务发现排序方法
随着Web服务的快速发展,服务发现成为一个重要而困难的问题。传统的基于uddi和基于wsdl的服务发现方法精度较低,而基于语义的服务发现方法通常效率低下且耗时。我们观察到社交注释可以优化服务发现的精度和效率。本文提出了一种基于社交标注的服务发现方法,并提出了查询标注相关性(Query Annotation Relevance, QAR)和服务标注排序(service Annotation Ranking, SAR)两种算法,分别计算动态查询依赖特征和静态查询独立特征。实验结果表明,该方法可以有效地提高服务发现的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-based testing of web service compositions Byzantine fault-tolerance in federated cloud computing An automated approach to robustness testing of BPEL orchestrations How can Service Oriented Systems make beneficial use of Model Driven Architecture and aspect paradigm? Event driven architecture modelling and simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1