Precise classification of coastal benthic habitats using high resolution Worldview-2 imagery

J. Marcello, F. Eugenio, F. Marqués, Javier Martín Abasolo
{"title":"Precise classification of coastal benthic habitats using high resolution Worldview-2 imagery","authors":"J. Marcello, F. Eugenio, F. Marqués, Javier Martín Abasolo","doi":"10.1109/IGARSS.2015.7326269","DOIUrl":null,"url":null,"abstract":"The analysis of the seafloor in shallow waters using remote sensing imagery at very high spatial resolution is a very challenging topic due to the minimum signal level received; the presence of noisy contributions from the atmosphere, solar reflection, foam, turbidity and water column; and the limited spectral information available for the classification at such depths that impedes, for example, the extraction of vegetation indices. In this complex scenario we have developed a mapping methodology that involves the precise application of pre-processing techniques and the use of efficient classification algorithms. In particular, after a detailed assessment, support vector machines achieved the best performance using the appropriate kernel and parameters. Two natural areas located at the Canary Islands (Spain) have been selected for their benthic habitats richness and specially for their preservation of highly protected seagrass regions.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7326269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The analysis of the seafloor in shallow waters using remote sensing imagery at very high spatial resolution is a very challenging topic due to the minimum signal level received; the presence of noisy contributions from the atmosphere, solar reflection, foam, turbidity and water column; and the limited spectral information available for the classification at such depths that impedes, for example, the extraction of vegetation indices. In this complex scenario we have developed a mapping methodology that involves the precise application of pre-processing techniques and the use of efficient classification algorithms. In particular, after a detailed assessment, support vector machines achieved the best performance using the appropriate kernel and parameters. Two natural areas located at the Canary Islands (Spain) have been selected for their benthic habitats richness and specially for their preservation of highly protected seagrass regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高分辨率Worldview-2图像精确分类沿海底栖生物栖息地
利用非常高空间分辨率的遥感图像分析浅海海底是一个非常具有挑战性的课题,因为接收到的信号电平最低;大气、太阳反射、泡沫、浊度和水柱的噪声贡献;而且,在这样的深度,用于分类的光谱信息有限,例如,阻碍了植被指数的提取。在这个复杂的场景中,我们开发了一种映射方法,它涉及预处理技术的精确应用和高效分类算法的使用。特别是,经过详细的评估,支持向量机在使用适当的核和参数时获得了最佳性能。位于加那利群岛(西班牙)的两个自然区域因其丰富的底栖生物栖息地和高度保护的海草区而被选中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interferometric and polarimetric methods to determine SWE, fresh snow depth and the anisotropy of dry snow Usefulness assessment of polarimetric parameters for line extraction from agricultural areas DEM and DHM reconstruction in tropical forests: Tomographic results at P-band with three flight tracks Nationwide ground deformation monitoring by persistent scatterer interferometry MICAP (Microwave imager combined active and passive): A new instrument for Chinese ocean salinity satellite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1