Work-in-Progress: BloCirNN: An Efficient Software/hardware Codesign Approach for Neural Network Accelerators with Block-Circulant Matrix

Yu Qin, Lei Gong, Zhendong Zheng, Chao Wang
{"title":"Work-in-Progress: BloCirNN: An Efficient Software/hardware Codesign Approach for Neural Network Accelerators with Block-Circulant Matrix","authors":"Yu Qin, Lei Gong, Zhendong Zheng, Chao Wang","doi":"10.1109/CODES-ISSS55005.2022.00010","DOIUrl":null,"url":null,"abstract":"Nowadays, the scale of deep neural networks is getting larger and larger. These large-scale deep neural networks are both compute and memory intensive. To overcome these problems, we use block-circulant weight matrices and Fast Fourier Transform (FFT) to compress model and optimize computation. Compared to weight pruning, this method does not suffer from irregular networks. The main contributions of this paper include the implementation of a convolution module and a fully-connected module with High-Level Synthesis (HLS), deployment and performance test on FPGA platform. We use AlexNet as a case study, which demonstrates our design is more efficient than the FPGA2016.","PeriodicalId":129167,"journal":{"name":"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODES-ISSS55005.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the scale of deep neural networks is getting larger and larger. These large-scale deep neural networks are both compute and memory intensive. To overcome these problems, we use block-circulant weight matrices and Fast Fourier Transform (FFT) to compress model and optimize computation. Compared to weight pruning, this method does not suffer from irregular networks. The main contributions of this paper include the implementation of a convolution module and a fully-connected module with High-Level Synthesis (HLS), deployment and performance test on FPGA platform. We use AlexNet as a case study, which demonstrates our design is more efficient than the FPGA2016.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于块循环矩阵的神经网络加速器的高效软硬件协同设计方法
如今,深度神经网络的规模越来越大。这些大规模的深度神经网络都是计算和内存密集型的。为了克服这些问题,我们使用块循环权矩阵和快速傅里叶变换(FFT)来压缩模型和优化计算。与权值修剪相比,这种方法不受不规则网络的影响。本文的主要工作包括卷积模块和高阶综合全连接模块的实现,以及FPGA平台上的部署和性能测试。我们使用AlexNet作为案例研究,这表明我们的设计比FPGA2016更高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Work-in-Progress: Lark: A Learned Secondary Index Toward LSM-tree for Resource-Constrained Embedded Storage Systems CODES+ISSS 2022 Program Committee Welcome Message from the CODES+ISSS 2022 Program Chairs Work-in-Progress: What to Expect of Early Training Statistics? An Investigation on Hardware-Aware Neural Architecture Search Work-in-Progress: Toward Energy-efficient Near STT-MRAM Processing Architecture for Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1