FDG: a precise measurement of fault diagnosability gain of test cases

Gabin An, S. Yoo
{"title":"FDG: a precise measurement of fault diagnosability gain of test cases","authors":"Gabin An, S. Yoo","doi":"10.1145/3533767.3534370","DOIUrl":null,"url":null,"abstract":"The performance of many Fault Localisation (FL) techniques directly depends on the quality of the used test suites. Consequently, it is extremely useful to be able to precisely measure how much diagnostic power each test case can introduce when added to a test suite used for FL. Such a measure can help us not only to prioritise and select test cases to be used for FL, but also to effectively augment test suites that are too weak to be used with FL techniques. We propose FDG, a new measure of Fault Diagnosability Gain for individual test cases. The design of FDG is based on our analysis of existing metrics that are designed to prioritise test cases for better FL. Unlike other metrics, FDG exploits the ongoing FL results to emphasise the parts of the program for which more information is needed. Our evaluation of FDG with Defects4J shows that it can successfully help the augmentation of test suites for better FL. When given only a few failing test cases (2.3 test cases on average), FDG can effectively augment the given test suite by prioritising the test cases generated automatically by EvoSuite: the augmentation can improve the acc@1 and acc@10 of the FL results by 11.6x and 2.2x on average, after requiring only ten human judgements on the correctness of the assertions EvoSuite generates.","PeriodicalId":412271,"journal":{"name":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533767.3534370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of many Fault Localisation (FL) techniques directly depends on the quality of the used test suites. Consequently, it is extremely useful to be able to precisely measure how much diagnostic power each test case can introduce when added to a test suite used for FL. Such a measure can help us not only to prioritise and select test cases to be used for FL, but also to effectively augment test suites that are too weak to be used with FL techniques. We propose FDG, a new measure of Fault Diagnosability Gain for individual test cases. The design of FDG is based on our analysis of existing metrics that are designed to prioritise test cases for better FL. Unlike other metrics, FDG exploits the ongoing FL results to emphasise the parts of the program for which more information is needed. Our evaluation of FDG with Defects4J shows that it can successfully help the augmentation of test suites for better FL. When given only a few failing test cases (2.3 test cases on average), FDG can effectively augment the given test suite by prioritising the test cases generated automatically by EvoSuite: the augmentation can improve the acc@1 and acc@10 of the FL results by 11.6x and 2.2x on average, after requiring only ten human judgements on the correctness of the assertions EvoSuite generates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FDG:测试用例的故障诊断增益的精确测量
许多故障定位(FL)技术的性能直接依赖于所使用的测试套件的质量。因此,当添加到用于FL的测试套件时,能够精确地测量每个测试用例可以引入多少诊断能力是非常有用的。这样的测量不仅可以帮助我们确定用于FL的测试用例的优先级并选择测试用例,而且还可以有效地增加太弱而不能与FL技术一起使用的测试套件。针对单个测试用例,我们提出了一种新的故障诊断增益度量FDG。FDG的设计是基于我们对现有指标的分析,这些指标是为了更好地优化测试用例而设计的。与其他指标不同,FDG利用正在进行的测试用例结果来强调程序中需要更多信息的部分。我们使用缺陷4j对FDG的评估表明,它可以成功地帮助增加测试套件以获得更好的FL。当只给出几个失败的测试用例(平均2.3个测试用例)时,FDG可以通过优先考虑EvoSuite自动生成的测试用例来有效地增加给定的测试套件:在只需要10次人工判断EvoSuite生成的断言的正确性之后,增强功能可以将FL结果的acc@1和acc@10平均提高11.6倍和2.2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One step further: evaluating interpreters using metamorphic testing Faster mutation analysis with MeMu Test mimicry to assess the exploitability of library vulnerabilities A large-scale study of usability criteria addressed by static analysis tools NCScope: hardware-assisted analyzer for native code in Android apps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1