Wolfpack-inspired evolutionary algorithm and a reaction-diffusion-based controller are used for pattern formation

Payam Zahadat, T. Schmickl
{"title":"Wolfpack-inspired evolutionary algorithm and a reaction-diffusion-based controller are used for pattern formation","authors":"Payam Zahadat, T. Schmickl","doi":"10.1145/2576768.2598262","DOIUrl":null,"url":null,"abstract":"The implicit social structure of population groups have been previously investigated in the literature representing enhancements in the performance of optimization algorithms. Here we introduce an evolutionary algorithm inspired by animal hunting groups (i.e. wolves). The algorithm implicitly maintains diversity in the population and performs higher than two state of the art evolutionary algorithms in the investigated case studies in this article. The case studies are to evolve a hormone-inspired system called AHHS (Artificial Homeostatic Hormone Systems) to develop spatial patterns. The complex spatial patterns are developed in the absence of any explicit spatial information. The results achieved by AHHS are presented and compared with a previous work with Artificial Neural Network (ANNs) indicating higher performance of AHHS.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The implicit social structure of population groups have been previously investigated in the literature representing enhancements in the performance of optimization algorithms. Here we introduce an evolutionary algorithm inspired by animal hunting groups (i.e. wolves). The algorithm implicitly maintains diversity in the population and performs higher than two state of the art evolutionary algorithms in the investigated case studies in this article. The case studies are to evolve a hormone-inspired system called AHHS (Artificial Homeostatic Hormone Systems) to develop spatial patterns. The complex spatial patterns are developed in the absence of any explicit spatial information. The results achieved by AHHS are presented and compared with a previous work with Artificial Neural Network (ANNs) indicating higher performance of AHHS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用狼群进化算法和基于反应扩散的控制器进行模式形成
人口群体的隐式社会结构已经在先前的文献中进行了研究,代表了优化算法性能的增强。这里我们介绍一种受动物狩猎群体(如狼)启发的进化算法。该算法隐式地保持种群的多样性,并且在本文所调查的案例研究中执行比两种最先进的进化算法更高的性能。这些案例研究是为了进化一种被称为AHHS(人工稳态激素系统)的激素启发系统来发展空间模式。复杂的空间模式是在没有任何明确的空间信息的情况下形成的。本文给出了AHHS的研究结果,并与以往的人工神经网络(ann)研究结果进行了比较,表明AHHS具有更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-cornered coevolution learning classifier systems for classification tasks Runtime analysis to compare best-improvement and first-improvement in memetic algorithms Clonal selection based fuzzy C-means algorithm for clustering SPSO 2011: analysis of stability; local convergence; and rotation sensitivity GPU-accelerated evolutionary design of the complete exchange communication on wormhole networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1