Collective Human Behavior in Cascading System: Discovery, Modeling and Applications

Yunfei Lu, Linyun Yu, T. Zhang, Chengxi Zang, Peng Cui, Chaoming Song, Wenwu Zhu
{"title":"Collective Human Behavior in Cascading System: Discovery, Modeling and Applications","authors":"Yunfei Lu, Linyun Yu, T. Zhang, Chengxi Zang, Peng Cui, Chaoming Song, Wenwu Zhu","doi":"10.1109/ICDM.2018.00045","DOIUrl":null,"url":null,"abstract":"The collective behavior, describing spontaneously emerging social processes and events, is ubiquitous in both physical society and online social media. The knowledge of collective behavior is critical in understanding and predicting social movements, fads, riots and so on. However, detecting, quantifying and modeling the collective behavior in online social media at large scale are seldom unexplored. In this paper, we examine a real-world online social media with more than 1.7 million information spreading records, which explicitly document the detailed human behavior in this online information cascading system. We observe evident collective behavior in information cascading, and then propose metrics to quantify the collectivity. We find that previous information cascading models cannot capture the collective behavior in the real-world and thus never utilize it. Furthermore, we propose a generative framework with a latent user interest layer to capture the collective behavior in cascading system. Our framework achieves high accuracy in modeling the information cascades with respect to popularity, structure and collectivity. By leveraging the knowledge of collective behavior, our model shows the capability of making predictions without temporal features or early-stage information. Our framework can serve as a more generalized one in modeling cascading system, and, together with empirical discovery and applications, advance our understanding of human behavior.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The collective behavior, describing spontaneously emerging social processes and events, is ubiquitous in both physical society and online social media. The knowledge of collective behavior is critical in understanding and predicting social movements, fads, riots and so on. However, detecting, quantifying and modeling the collective behavior in online social media at large scale are seldom unexplored. In this paper, we examine a real-world online social media with more than 1.7 million information spreading records, which explicitly document the detailed human behavior in this online information cascading system. We observe evident collective behavior in information cascading, and then propose metrics to quantify the collectivity. We find that previous information cascading models cannot capture the collective behavior in the real-world and thus never utilize it. Furthermore, we propose a generative framework with a latent user interest layer to capture the collective behavior in cascading system. Our framework achieves high accuracy in modeling the information cascades with respect to popularity, structure and collectivity. By leveraging the knowledge of collective behavior, our model shows the capability of making predictions without temporal features or early-stage information. Our framework can serve as a more generalized one in modeling cascading system, and, together with empirical discovery and applications, advance our understanding of human behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
级联系统中的人类集体行为:发现、建模和应用
集体行为,描述自发出现的社会过程和事件,在实体社会和在线社交媒体中无处不在。对集体行为的了解对于理解和预测社会运动、时尚、骚乱等至关重要。然而,大规模的在线社交媒体集体行为的检测、量化和建模很少未被探索。在本文中,我们研究了一个真实世界的在线社交媒体,它有超过170万条信息传播记录,这些记录明确地记录了这个在线信息级联系统中的详细人类行为。我们观察了信息级联中明显的集体行为,然后提出了量化集体的指标。我们发现以往的信息级联模型无法捕捉到现实世界中的集体行为,因此无法利用它。此外,我们提出了一个具有潜在用户兴趣层的生成框架来捕获级联系统中的集体行为。我们的框架在信息级联的流行度、结构和集体性方面达到了较高的建模精度。通过利用集体行为的知识,我们的模型显示了在没有时间特征或早期信息的情况下进行预测的能力。我们的框架可以作为一个更广义的级联系统模型,并与经验发现和应用一起,促进我们对人类行为的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1