Fuzzy rule enhanced support vector machines for classification of emotions from brain networks

Reshma Kar, Pratyusha Das, A. Konar, Aruna Chakraborty
{"title":"Fuzzy rule enhanced support vector machines for classification of emotions from brain networks","authors":"Reshma Kar, Pratyusha Das, A. Konar, Aruna Chakraborty","doi":"10.1109/CIEC.2016.7513672","DOIUrl":null,"url":null,"abstract":"Support Vector Machines are widely accepted in the field of pattern recognition because of their superiority in performing supervised classification. It is known that all kernel parameters may be used for classification more-or-less precisely (giving rise to vagueness) and also for the same classification problem, there are a number of kernel parameters which give the best accuracy (giving rise to uncertainty). Hence, an appropriate scheme of representing best suited kernel parameters for a given classification problem requires an Interval-type 2 approach. In this work the authors introduce a fuzzy rule-based kernel parameter selection technique which is based on the variability (inter-class and intra-class scatter) of the dataset to be classified. A significant advantage of using the proposed fuzzy kernel parameter selection technique is that one can identify the kernel parameter which has least curvature and hence avoid over fitting. The introduced method of kernel parameter selection is tested in an emotion recognition problem by brain network analysis. Experiments undertaken indicate that selection of appropriate kernel parameters can increase accuracy up to 30%.","PeriodicalId":443343,"journal":{"name":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEC.2016.7513672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Support Vector Machines are widely accepted in the field of pattern recognition because of their superiority in performing supervised classification. It is known that all kernel parameters may be used for classification more-or-less precisely (giving rise to vagueness) and also for the same classification problem, there are a number of kernel parameters which give the best accuracy (giving rise to uncertainty). Hence, an appropriate scheme of representing best suited kernel parameters for a given classification problem requires an Interval-type 2 approach. In this work the authors introduce a fuzzy rule-based kernel parameter selection technique which is based on the variability (inter-class and intra-class scatter) of the dataset to be classified. A significant advantage of using the proposed fuzzy kernel parameter selection technique is that one can identify the kernel parameter which has least curvature and hence avoid over fitting. The introduced method of kernel parameter selection is tested in an emotion recognition problem by brain network analysis. Experiments undertaken indicate that selection of appropriate kernel parameters can increase accuracy up to 30%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊规则的支持向量机在脑网络情绪分类中的应用
支持向量机由于其在监督分类方面的优越性,在模式识别领域得到了广泛的应用。众所周知,所有的核参数都可以用于或多或少的精确分类(产生模糊性),并且对于相同的分类问题,存在许多核参数给出最好的精度(产生不确定性)。因此,对于给定的分类问题,表示最适合的核参数的适当方案需要使用interval - 2方法。在这项工作中,作者引入了一种基于模糊规则的核参数选择技术,该技术基于待分类数据集的可变性(类间和类内分散)。采用所提出的模糊核参数选择技术的一个显著优点是可以识别曲率最小的核参数,从而避免过拟合。通过脑网络分析,对引入的核参数选择方法进行了情感识别问题的验证。实验表明,选择合适的核参数可使精度提高30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design methodology, control and performance of a three-phase grid-tie PV inverter under maximum power point tracking An improved performance of the soft switching buck converter Multi-objective function for system modeling and optimal management of Micro grid: A hybrid technique A single-phase isolated Z-source inverter Three phase three switch modular Vienna, Boost and SEPIC rectifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1