Evolving the mapping between input neurons and multi-source imagery

Peter R. W. Harvey, D. Booth, J. Boyce
{"title":"Evolving the mapping between input neurons and multi-source imagery","authors":"Peter R. W. Harvey, D. Booth, J. Boyce","doi":"10.1109/CEC.2002.1004529","DOIUrl":null,"url":null,"abstract":"We present a mutable input field concept that allows a neural network to evolve a mapping between its input layer and a 3-dimensional input cube consisting of a local window applied within multiple imagery sources, such as hyperspectral bands, feature maps, or even encoded tactical information regarding likely object location and class. This allows the net to exploit salient regions (both within and across sources) of what may otherwise be an unwieldy input domain. Small recurrent neural networks are evolved to perform object detection within airborne reconnaissance imagery that has been processed to provide 3 colour bands and 2 feature maps including one designed to identify man-made structures based on perpendicularity of edge direction. A variable input field is shown to provide faster convergence and superior detector fitness over a number of trials than a set of alternative fixed input field mappings.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1004529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a mutable input field concept that allows a neural network to evolve a mapping between its input layer and a 3-dimensional input cube consisting of a local window applied within multiple imagery sources, such as hyperspectral bands, feature maps, or even encoded tactical information regarding likely object location and class. This allows the net to exploit salient regions (both within and across sources) of what may otherwise be an unwieldy input domain. Small recurrent neural networks are evolved to perform object detection within airborne reconnaissance imagery that has been processed to provide 3 colour bands and 2 feature maps including one designed to identify man-made structures based on perpendicularity of edge direction. A variable input field is shown to provide faster convergence and superior detector fitness over a number of trials than a set of alternative fixed input field mappings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进化输入神经元与多源图像之间的映射
我们提出了一个可变输入域的概念,允许神经网络在其输入层和三维输入立方体之间发展映射,三维输入立方体由应用于多个图像源的局部窗口组成,如高光谱波段、特征图,甚至是关于可能物体位置和类别的编码战术信息。这允许网络利用显著区域(包括内部和跨源),否则可能是一个笨拙的输入域。小型递归神经网络被进化为在机载侦察图像中执行目标检测,该图像已被处理为提供3个色带和2个特征图,其中一个用于根据边缘方向的垂直度识别人造结构。与一组可选的固定输入域映射相比,可变输入域在多次试验中提供更快的收敛性和更好的检测器适应度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of FPGA based adaptive image enhancement filter system using genetic algorithms Intelligent predictive control of a power plant with evolutionary programming optimizer and neuro-fuzzy identifier Blocked stochastic sampling versus Estimation of Distribution Algorithms Distinguishing adaptive from non-adaptive evolution using Ashby's law of requisite variety An artificial immune network for multimodal function optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1