Hot Area Targeting Dead Reckoning for Distributed Virtual Environments

Youfu Chen, Wentong Cai, Elvis S. Liu
{"title":"Hot Area Targeting Dead Reckoning for Distributed Virtual Environments","authors":"Youfu Chen, Wentong Cai, Elvis S. Liu","doi":"10.1145/3437959.3459260","DOIUrl":null,"url":null,"abstract":"Dead reckoning (DR) is a key technique to increase scalability in Distributed Virtual Environments (DVE). Replacing data transmission with prediction, DR relies on its prediction capability to reduce the bandwidth consumption in the cost of inconsistency among participants. We propose a hot area targeting DR (HATDR) approach to increase the prediction capability by the hot area targeting pattern discovered with a noise-resistant clustering approach. This approach is shown to be robust against hyperparameters. Experiments carried out with a real-life MMOG dataset show that HATDR is comparable to the state-of-the-art DR approaches.","PeriodicalId":169025,"journal":{"name":"Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437959.3459260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dead reckoning (DR) is a key technique to increase scalability in Distributed Virtual Environments (DVE). Replacing data transmission with prediction, DR relies on its prediction capability to reduce the bandwidth consumption in the cost of inconsistency among participants. We propose a hot area targeting DR (HATDR) approach to increase the prediction capability by the hot area targeting pattern discovered with a noise-resistant clustering approach. This approach is shown to be robust against hyperparameters. Experiments carried out with a real-life MMOG dataset show that HATDR is comparable to the state-of-the-art DR approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式虚拟环境的热区定位航位推算
在分布式虚拟环境(DVE)中,航位推算(DR)是提高可扩展性的关键技术。用预测代替数据传输,DR依靠其预测能力来减少参与者之间不一致的代价中的带宽消耗。我们提出了一种热区瞄准DR (HATDR)方法,通过抗噪声聚类方法发现的热区瞄准模式来提高预测能力。该方法对超参数具有鲁棒性。用真实的MMOG数据集进行的实验表明,HATDR可以与最先进的DR方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Session 8: Discrete Event Simulations COSIDIA: An Approach for Real-Time Parallel Discrete Event Simulations Tailored for Wireless Networks Comparing Implementations of Cellular Automata as Images: A Novel Approach to Verification by Combining Image Processing and Machine Learning When the Wisdom of Crowd is Able to Overturn an Unpopular Norm? Lessons Learned from an Agent-Based Simulation Causality and Consistency of State Update Schemes in Synchronous Agent-based Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1