Verification Runtime Analysis: Get the Most Out of Partial Verification

Martin Ring, Fritjof Bornebusch, Christoph Lüth, R. Wille, R. Drechsler
{"title":"Verification Runtime Analysis: Get the Most Out of Partial Verification","authors":"Martin Ring, Fritjof Bornebusch, Christoph Lüth, R. Wille, R. Drechsler","doi":"10.23919/DATE48585.2020.9116543","DOIUrl":null,"url":null,"abstract":"The design of modern systems has reached a complexity which makes it inevitable to apply verification methods in order to guarantee its correct and safe execution. The verification methods frequently produce proof obligations that can not be solved any more due to the huge search space. However, by setting enough variables to fixed values, the search space is obviously reduced and solving engines eventually may be able to complete the verification task. Although this results in a partial verification, the results may still be valuable — in particular as opposed to the alternative of no verification at all. However, so far no systematic investigation has been conducted on which variables to fix in order to reduce verification runtime as much as possible while, at the same time, still getting most coverage. This paper addresses this question by proposing a corresponding verification runtime analysis. Experimental evaluations confirm the potential of this approach.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The design of modern systems has reached a complexity which makes it inevitable to apply verification methods in order to guarantee its correct and safe execution. The verification methods frequently produce proof obligations that can not be solved any more due to the huge search space. However, by setting enough variables to fixed values, the search space is obviously reduced and solving engines eventually may be able to complete the verification task. Although this results in a partial verification, the results may still be valuable — in particular as opposed to the alternative of no verification at all. However, so far no systematic investigation has been conducted on which variables to fix in order to reduce verification runtime as much as possible while, at the same time, still getting most coverage. This paper addresses this question by proposing a corresponding verification runtime analysis. Experimental evaluations confirm the potential of this approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
验证运行时分析:充分利用部分验证
现代系统的设计已经达到了一定的复杂性,为了保证其正确和安全的执行,必须采用验证方法。验证方法由于搜索空间巨大,常常产生无法解决的证明义务。然而,通过将足够多的变量设置为固定值,可以明显减少搜索空间,求解引擎最终可能能够完成验证任务。尽管这会导致部分验证,但结果可能仍然是有价值的——特别是与完全不验证的替代方案相反。然而,到目前为止,还没有进行系统的调查,以确定哪些变量可以尽可能地减少验证运行时,同时仍然获得大多数覆盖率。本文通过提出相应的验证运行时分析来解决这个问题。实验评估证实了这种方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1