Optimal Bonus-Malus Systems Using Generalized Additive Models for Location, Scale and Shape

G. Tzougas, Spyridon D. Vrontos, Nikolaos Fragos
{"title":"Optimal Bonus-Malus Systems Using Generalized Additive Models for Location, Scale and Shape","authors":"G. Tzougas, Spyridon D. Vrontos, Nikolaos Fragos","doi":"10.2139/ssrn.2612640","DOIUrl":null,"url":null,"abstract":"This paper presents the design of optimal Bonus-Malus Systems (BMS) using generalized additive models for location, scale and shape (GAMLSS), extending the work of Tzougas, Frangos and Vrontos (2014). Specifically, for the frequency component we employ a Negative Binomial Type I, a Poisson-Inverse Gaussian, a Sichel and a finite Poisson mixture GAMLSS model, while for the severity component we employ a Pareto and a finite Exponential mixture GAMLSS models. In the path towards actuarial relevance the Bayesian view is taken and the premiums are calculated by updating the posterior mean and posterior probability of the policyholders' classes of risk. Our analysis shows that the employment of more advanced models can provide a measure of uncertainty regarding the credibility updates of claim frequency/severity of each specific risk class and the difference in the premium that they imply can act as a cushion against adverse experience. Finally, these \"tailor-made\" premiums are compared to those which correspond to the 'univariate',without regression components, models.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2612640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the design of optimal Bonus-Malus Systems (BMS) using generalized additive models for location, scale and shape (GAMLSS), extending the work of Tzougas, Frangos and Vrontos (2014). Specifically, for the frequency component we employ a Negative Binomial Type I, a Poisson-Inverse Gaussian, a Sichel and a finite Poisson mixture GAMLSS model, while for the severity component we employ a Pareto and a finite Exponential mixture GAMLSS models. In the path towards actuarial relevance the Bayesian view is taken and the premiums are calculated by updating the posterior mean and posterior probability of the policyholders' classes of risk. Our analysis shows that the employment of more advanced models can provide a measure of uncertainty regarding the credibility updates of claim frequency/severity of each specific risk class and the difference in the premium that they imply can act as a cushion against adverse experience. Finally, these "tailor-made" premiums are compared to those which correspond to the 'univariate',without regression components, models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于位置、规模和形状的广义可加模型的最优奖惩系统
本文提出了基于位置、规模和形状的广义加性模型(GAMLSS)的最优奖惩系统(BMS)的设计,扩展了Tzougas、Frangos和Vrontos(2014)的工作。具体来说,对于频率成分,我们采用负二项I型,泊松-逆高斯,Sichel和有限泊松混合GAMLSS模型,而对于严重性成分,我们采用Pareto和有限指数混合GAMLSS模型。在通往精算相关性的道路上,采取贝叶斯观点,通过更新保单持有人风险类别的后验均值和后验概率来计算保费。我们的分析表明,采用更先进的模型可以提供关于每个特定风险类别的索赔频率/严重程度的可信度更新的不确定性措施,以及它们暗示的保费差异可以作为不利经验的缓冲。最后,将这些“量身定制”的保费与那些对应于“单变量”(不含回归成分)模型的保费进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Inference for Moment Condition Models without Rational Expectations Augmented cointegrating linear models with possibly strongly correlated stationary and nonstationary regressors regressors Structured Additive Regression and Tree Boosting Large-Scale Precision Matrix Estimation With SQUIC Error Correction Models and Regressions for Non-Cointegrated Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1