Discriminative Robust Head-Pose and Gaze Estimation Using Kernel-DMCCA Features Fusion

Salah Rabba, M. Kyan, Lei Gao, A. Quddus, A. S. Zandi, L. Guan
{"title":"Discriminative Robust Head-Pose and Gaze Estimation Using Kernel-DMCCA Features Fusion","authors":"Salah Rabba, M. Kyan, Lei Gao, A. Quddus, A. S. Zandi, L. Guan","doi":"10.1142/s1793351x20500014","DOIUrl":null,"url":null,"abstract":"There remain outstanding challenges for improving accuracy of multi-feature information for head-pose and gaze estimation. The proposed framework employs discriminative analysis for head-pose and gaze estimation using kernel discriminative multiple canonical correlation analysis (K-DMCCA). The feature extraction component of the framework includes spatial indexing, statistical and geometrical elements. Head-pose and gaze estimation is constructed by feature aggregation and transforming features into a higher dimensional space using K-DMCCA for accurate estimation. The two main contributions are: Enhancing fusion performance through the use of kernel-based DMCCA, and by introducing an improved iris region descriptor based on quadtree. The overall approach is also inclusive of statistical and geometrical indexing that are calibration free (does not require any subsequent adjustment). We validate the robustness of the proposed framework across a wide variety of datasets, which consist of different modalities (RGB and Depth), constraints (wide range of head-poses, not only frontal), quality (accurately labelled for validation), occlusion (due to glasses, hair bang, facial hair) and illumination. Our method achieved an accurate head-pose and gaze estimation of 4.8∘ using Cave, 4.6∘ using MPII, 5.1∘ using ACS, 5.9∘ using EYEDIAP, 4.3∘ using OSLO and 4.6∘ using UULM datasets.","PeriodicalId":217956,"journal":{"name":"Int. J. Semantic Comput.","volume":"85 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Semantic Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793351x20500014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There remain outstanding challenges for improving accuracy of multi-feature information for head-pose and gaze estimation. The proposed framework employs discriminative analysis for head-pose and gaze estimation using kernel discriminative multiple canonical correlation analysis (K-DMCCA). The feature extraction component of the framework includes spatial indexing, statistical and geometrical elements. Head-pose and gaze estimation is constructed by feature aggregation and transforming features into a higher dimensional space using K-DMCCA for accurate estimation. The two main contributions are: Enhancing fusion performance through the use of kernel-based DMCCA, and by introducing an improved iris region descriptor based on quadtree. The overall approach is also inclusive of statistical and geometrical indexing that are calibration free (does not require any subsequent adjustment). We validate the robustness of the proposed framework across a wide variety of datasets, which consist of different modalities (RGB and Depth), constraints (wide range of head-poses, not only frontal), quality (accurately labelled for validation), occlusion (due to glasses, hair bang, facial hair) and illumination. Our method achieved an accurate head-pose and gaze estimation of 4.8∘ using Cave, 4.6∘ using MPII, 5.1∘ using ACS, 5.9∘ using EYEDIAP, 4.3∘ using OSLO and 4.6∘ using UULM datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核- dmcca特征融合的判别鲁棒头部姿态和凝视估计
提高多特征信息在头部姿态和注视估计中的准确性仍然是一个突出的挑战。该框架采用判别分析方法对头部姿态和凝视进行估计,并使用核判别多重典型相关分析(K-DMCCA)进行估计。该框架的特征提取部分包括空间索引、统计元素和几何元素。头部姿态和凝视估计是通过特征聚合构建的,并使用K-DMCCA将特征转换到更高的维度空间进行精确估计。主要有两个方面的贡献:通过使用基于核的DMCCA来提高融合性能,以及通过引入基于四叉树的改进虹膜区域描述符来提高融合性能。总体方法还包括不需要校准的统计和几何索引(不需要任何后续调整)。我们在各种各样的数据集上验证了所提出框架的鲁棒性,这些数据集包括不同的模态(RGB和Depth)、约束(大范围的头部姿势,不仅是正面)、质量(准确标记以进行验证)、遮挡(由于眼镜、发刘海、面部毛发)和照明。我们的方法实现了对4.8°Cave、4.6°MPII、5.1°ACS、5.9°EYEDIAP、4.3°OSLO和4.6°UULM数据集的准确头部姿势和凝视估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editorial - Special Issue on IEEE AIKE 2022 TemporalDedup: Domain-Independent Deduplication of Redundant and Errant Temporal Data Knowledge Graph-Based Explainable Artificial Intelligence for Business Process Analysis Knowledge Graph-Based Integration of Autonomous Driving Datasets Confidence-Based Cheat Detection Through Constrained Order Inference of Temporal Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1