{"title":"Controlling alternate routing in general-mesh packet flow networks","authors":"S. Sibal, A. DeSimone","doi":"10.1145/190314.190330","DOIUrl":null,"url":null,"abstract":"High-speed packet networks will begin to support services that need Quality-of-Service (QoS) guarantees. Guaranteeing QoS typically translates to reserving resources for the duration of a call. We propose a state-dependent routing scheme that builds on any base state-independent routing scheme, by routing flows which are blocked on their primary paths (as selected by the state-independent scheme) onto alternate paths in a manner that is guaranteed—under certain Poisson assumptions— to improve on the performance of the base state-independent scheme. Our scheme only requires each node to have state information of those links that are incident on it. Such a scheme is of value when either the base state-independent scheme is already in place and a complete overhaul of the routing algorithm is undesirable, or when the state (reserved flows) of a link changes fast enough that the timely update of state information is infeasible to all possible call-originators. The performance improvements due to our controlled alternate routing scheme are borne out from simulations conducted on a fully-connected 4-node network, as well as on a sparsely-connected 12-node network modeled on the NSFNet T3 Backbone.","PeriodicalId":142337,"journal":{"name":"Proceedings of the conference on Communications architectures, protocols and applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference on Communications architectures, protocols and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/190314.190330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
High-speed packet networks will begin to support services that need Quality-of-Service (QoS) guarantees. Guaranteeing QoS typically translates to reserving resources for the duration of a call. We propose a state-dependent routing scheme that builds on any base state-independent routing scheme, by routing flows which are blocked on their primary paths (as selected by the state-independent scheme) onto alternate paths in a manner that is guaranteed—under certain Poisson assumptions— to improve on the performance of the base state-independent scheme. Our scheme only requires each node to have state information of those links that are incident on it. Such a scheme is of value when either the base state-independent scheme is already in place and a complete overhaul of the routing algorithm is undesirable, or when the state (reserved flows) of a link changes fast enough that the timely update of state information is infeasible to all possible call-originators. The performance improvements due to our controlled alternate routing scheme are borne out from simulations conducted on a fully-connected 4-node network, as well as on a sparsely-connected 12-node network modeled on the NSFNet T3 Backbone.