Optimal Tracking for Nonlinear Interconnected Dynamic Systems using State Dependent Riccati Equation

Anahita Moradmand, B. Shafai, M. Saif
{"title":"Optimal Tracking for Nonlinear Interconnected Dynamic Systems using State Dependent Riccati Equation","authors":"Anahita Moradmand, B. Shafai, M. Saif","doi":"10.23919/WAC55640.2022.9934167","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of optimal control of nonlinear single and multiple interconnected dynamic systems using state dependent Riccati equation (SDRE). SDRE method mimics the classical LQR method of optimal linear control for a large class of nonlinear systems. It relies on a non-unique factorization of nonlinear systems known as the state dependent coefficient (SDC) parametrization. The paper initially provides a comprehensive derivation of SDRE for a single nonlinear system represented by SDC. Then, the necessary equations are given for multiple interconnected dynamic system based on the generalized SDC representation. We show the effectiveness of SDRE method and compare it with the method of control law partitioning or the method of computed-torque control (CTC), which has been used in control of robotics manipulators. Illustrative examples are given to demonstrate the usefulness of SDRE method as applied to single and multiple interconnected inverted pendulum as well as robotic manipulator.","PeriodicalId":339737,"journal":{"name":"2022 World Automation Congress (WAC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 World Automation Congress (WAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WAC55640.2022.9934167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the problem of optimal control of nonlinear single and multiple interconnected dynamic systems using state dependent Riccati equation (SDRE). SDRE method mimics the classical LQR method of optimal linear control for a large class of nonlinear systems. It relies on a non-unique factorization of nonlinear systems known as the state dependent coefficient (SDC) parametrization. The paper initially provides a comprehensive derivation of SDRE for a single nonlinear system represented by SDC. Then, the necessary equations are given for multiple interconnected dynamic system based on the generalized SDC representation. We show the effectiveness of SDRE method and compare it with the method of control law partitioning or the method of computed-torque control (CTC), which has been used in control of robotics manipulators. Illustrative examples are given to demonstrate the usefulness of SDRE method as applied to single and multiple interconnected inverted pendulum as well as robotic manipulator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于状态相关Riccati方程的非线性互联动态系统最优跟踪
利用状态相关Riccati方程(SDRE)研究了非线性单、多互联动态系统的最优控制问题。SDRE方法模拟了一类非线性系统最优线性控制的经典LQR方法。它依赖于非线性系统的非唯一分解,即状态相关系数(SDC)参数化。本文首先对以SDC为代表的单一非线性系统的SDRE进行了全面的推导。然后,基于广义SDC表示,给出了多个互联动态系统的必要方程。我们证明了SDRE方法的有效性,并将其与控制律划分方法或计算扭矩控制方法(CTC)进行了比较,这两种方法已用于机器人机械臂的控制。通过算例说明了SDRE方法在单、多互联倒立摆和机械臂的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability analysis of high slope based on MIDAS GTS digital simulation Research on Bridge Health Management Prediction System Based on deep learning Research on power technology and application architecture based on 5g message operation platform Algorithm modeling technology of computer aided fractal art pattern design Posture Estimation System for Excavator Manipulator Using Deep Learning and Inverse Kinematics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1