Review on Machine Learning Based Lesion Segmentation Methods from Brain MR Images

Evgin Göçeri, E. Durá, M. Günay
{"title":"Review on Machine Learning Based Lesion Segmentation Methods from Brain MR Images","authors":"Evgin Göçeri, E. Durá, M. Günay","doi":"10.1109/ICMLA.2016.0102","DOIUrl":null,"url":null,"abstract":"Brain lesions are life threatening diseases. Traditional diagnosis of brain lesions is performed visually by neuro-radiologists. Nowadays, advanced technologies and the progress in magnetic resonance imaging provide computer aided diagnosis using automated methods that can detect and segment abnormal regions from different medical images. Among several techniques, machine learning based methods are flexible and efficient. Therefore, in this paper, we present a review on techniques applied for detection and segmentation of brain lesions from magnetic resonance images with supervised and unsupervised machine learning techniques.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Brain lesions are life threatening diseases. Traditional diagnosis of brain lesions is performed visually by neuro-radiologists. Nowadays, advanced technologies and the progress in magnetic resonance imaging provide computer aided diagnosis using automated methods that can detect and segment abnormal regions from different medical images. Among several techniques, machine learning based methods are flexible and efficient. Therefore, in this paper, we present a review on techniques applied for detection and segmentation of brain lesions from magnetic resonance images with supervised and unsupervised machine learning techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的脑MR图像病灶分割方法综述
脑部病变是危及生命的疾病。传统的脑部病变诊断是由神经放射科医生通过视觉进行的。如今,磁共振成像的先进技术和进步提供了计算机辅助诊断,使用自动化方法可以从不同的医学图像中检测和分割异常区域。在几种技术中,基于机器学习的方法灵活高效。因此,在本文中,我们介绍了应用监督和无监督机器学习技术从磁共振图像中检测和分割脑病变的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prediction Modelling and Pattern Detection Approach for the First-Episode Psychosis Associated to Cannabis Use An Effective and Efficient Similarity-Matrix-Based Algorithm for Clustering Big Mobile Social Data Time Series Classification Using Time Warping Invariant Echo State Networks Improved Time Series Classification with Representation Diversity and SVM Android Malware Detection: Building Useful Representations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1