Power Grid parameter estimation using Sparse Identification of Nonlinear Dynamics

Asif Hamid, Danish Rafiq, S. A. Nahvi, M. A. Bazaz
{"title":"Power Grid parameter estimation using Sparse Identification of Nonlinear Dynamics","authors":"Asif Hamid, Danish Rafiq, S. A. Nahvi, M. A. Bazaz","doi":"10.1109/ICICCSP53532.2022.9862464","DOIUrl":null,"url":null,"abstract":"The recent discovery of nonlinear system identification via the Sparse Identification of Nonlinear Dynamics (SINDy) method has enjoyed a lot of success across many engineering applications. Due to innovations in sparse regression and compressed sensing, this technique enables tractable identification of both the structure and parameters of a nonlinear dynamical system from data. In the present work, we show the application of SINDy for estimating power-grid parameters. In particular, we demonstrate how SINDy can be used to extract the underlying swing equations from time-series data and thus estimate the critical power-system parameters like rotor inertia and damping coefficients with high degree of accuracy. We demonstrate the results on the Ring-Grid and the IEEE 39-Bus test system.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The recent discovery of nonlinear system identification via the Sparse Identification of Nonlinear Dynamics (SINDy) method has enjoyed a lot of success across many engineering applications. Due to innovations in sparse regression and compressed sensing, this technique enables tractable identification of both the structure and parameters of a nonlinear dynamical system from data. In the present work, we show the application of SINDy for estimating power-grid parameters. In particular, we demonstrate how SINDy can be used to extract the underlying swing equations from time-series data and thus estimate the critical power-system parameters like rotor inertia and damping coefficients with high degree of accuracy. We demonstrate the results on the Ring-Grid and the IEEE 39-Bus test system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非线性动力学稀疏识别进行电网参数估计
最近,通过非线性动力学稀疏识别(SINDy)方法进行非线性系统识别的发现在许多工程应用中取得了巨大成功。由于稀疏回归和压缩传感方面的创新,这项技术能够从数据中识别非线性动力系统的结构和参数。在本研究中,我们展示了 SINDy 在电网参数估计中的应用。特别是,我们展示了如何利用 SINDy 从时间序列数据中提取基本摆动方程,从而高精度地估计转子惯性和阻尼系数等关键电力系统参数。我们在环形电网和 IEEE 39 总线测试系统上演示了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact on Electrical Distribution Networks with The Integration of Shunt Capacitor Model Using Exhaustive Search Based Load Flow Algorithm A Smart Solar Charge Controller Based on IOT Technology with Hardware Implementation Message from the Chairman, Sree Group Material Properties and Tool selection for Friction Stir Welding: A Review Adversarial Attacks against Machine Learning Classifiers: A Study of Sentiment Classification in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1