Learning From A Big Brother - Mimicking Neural Networks in Profiled Side-channel Analysis

Daan van der Valk, Marina Krček, S. Picek, S. Bhasin
{"title":"Learning From A Big Brother - Mimicking Neural Networks in Profiled Side-channel Analysis","authors":"Daan van der Valk, Marina Krček, S. Picek, S. Bhasin","doi":"10.1109/DAC18072.2020.9218520","DOIUrl":null,"url":null,"abstract":"Recently, deep learning has emerged as a powerful technique for side-channel attacks, capable of even breaking common countermeasures. Still, trained models are generally large, and thus, performing evaluation becomes resource-intensive. The resource requirements increase in realistic settings where traces can be noisy, and countermeasures are active. In this work, we exploit mimicking to compress the learned models. We demonstrate up to 300 times compression of a state-of-the-art CNN. The mimic shallow network can also achieve much better accuracy as compared to when trained on original data and even reach the performance of a deeper network.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recently, deep learning has emerged as a powerful technique for side-channel attacks, capable of even breaking common countermeasures. Still, trained models are generally large, and thus, performing evaluation becomes resource-intensive. The resource requirements increase in realistic settings where traces can be noisy, and countermeasures are active. In this work, we exploit mimicking to compress the learned models. We demonstrate up to 300 times compression of a state-of-the-art CNN. The mimic shallow network can also achieve much better accuracy as compared to when trained on original data and even reach the performance of a deeper network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
向老大哥学习--在侧信道轮廓分析中模仿神经网络
最近,深度学习已成为一种强大的侧信道攻击技术,甚至能够破解常见的反制措施。不过,训练好的模型一般都比较大,因此进行评估时会耗费大量资源。在轨迹可能存在噪声且反制措施活跃的现实环境中,资源需求会增加。在这项工作中,我们利用模仿来压缩所学模型。我们展示了比最先进的 CNN 压缩多达 300 倍的效果。与在原始数据上训练时相比,模仿浅层网络还能获得更好的准确性,甚至达到更深层网络的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1