EEG spike detection using backpropagation networks

R. Eberhart, R. W. Dobbins, W. Webber
{"title":"EEG spike detection using backpropagation networks","authors":"R. Eberhart, R. W. Dobbins, W. Webber","doi":"10.1109/IJCNN.1989.118551","DOIUrl":null,"url":null,"abstract":"Summary form only given, as follows. The design of a system to analyze electroencephalogram (EEG) signals for the detection of epileptiform spikes is described. The ultimate goal is real-time multichannel spike detection. Two main areas of development are reviewed. The first is the processing and characterization of the raw EEG data, including issues related to data rates, the number of data channels, and the tradeoffs between the amount of data preprocessing and the complexities of the neural net work required. The second is the selection and implementation of the neural net work architecture, including choices between supervised and unsupervised learning schemes, and among the many available learning algorithms for each network architecture. Interim results involving the analysis of single-channel EEG data are discussed. The relationship of the spike detection project to a similar effort in seizure detection is described.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Summary form only given, as follows. The design of a system to analyze electroencephalogram (EEG) signals for the detection of epileptiform spikes is described. The ultimate goal is real-time multichannel spike detection. Two main areas of development are reviewed. The first is the processing and characterization of the raw EEG data, including issues related to data rates, the number of data channels, and the tradeoffs between the amount of data preprocessing and the complexities of the neural net work required. The second is the selection and implementation of the neural net work architecture, including choices between supervised and unsupervised learning schemes, and among the many available learning algorithms for each network architecture. Interim results involving the analysis of single-channel EEG data are discussed. The relationship of the spike detection project to a similar effort in seizure detection is described.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于反向传播网络的脑电图尖峰检测
仅给出摘要形式,如下。描述了一种分析脑电图(EEG)信号以检测癫痫状尖峰的系统设计。最终目标是实时多通道尖峰检测。审查了两个主要的发展领域。首先是原始脑电图数据的处理和表征,包括与数据速率、数据通道数量以及数据预处理量和所需神经网络复杂性之间的权衡相关的问题。其次是神经网络体系结构的选择和实现,包括有监督和无监督学习方案之间的选择,以及每种网络体系结构的许多可用学习算法。讨论了单通道脑电图数据分析的中期结果。描述了尖峰检测项目与癫痫检测中类似工作的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid distributed/local connectionist architectures A new back-propagation algorithm with coupled neuron A novel objective function for improved phoneme recognition using time delay neural networks Optimization of a digital neuron design Multitarget tracking with an optical neural net using a quadratic energy function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1