Development of Support Equipment for SATCOM Avionics

Christopher J. Guerra, M. Darnell, Larry T. McDaniel, M. Wasiewicz, Patrick Saenz, Josh Anderson
{"title":"Development of Support Equipment for SATCOM Avionics","authors":"Christopher J. Guerra, M. Darnell, Larry T. McDaniel, M. Wasiewicz, Patrick Saenz, Josh Anderson","doi":"10.1109/AUTOTESTCON47462.2022.9984776","DOIUrl":null,"url":null,"abstract":"Demand for satellite communication (SATCOM) infrastructure has led to the development of a geosynchronous spacecraft to enable communications between ground and mobile terminals for video data. When fully loaded, the ground support equipment (GSE) provides handling for payload data of 1.2 Gbps distributed across more than 100 continuous carrier terminals or 1000 time division multiple access (TDMA) terminals. This paper assesses the implementation of GSE to verify the hardware design of this multi-radio, multi-terminal avionics unit. The GSE contains a unique design based around a communications slice, each of which provides one of four L-band interfaces to the unit under test (UUT) for both transmit and receive data. The GSE uses a channel emulator to impose impairments on the radio frequency (RF) signals to include noise, propagation delay, and dynamic frequency offset. For adjacent channel loading, the GSE contains an arbitrary waveform generator (A WG) that can implement simulated terminals in a composite waveform. This function complements the slices that contain servers connected to software defined radios (SDRs). The GSE employs an Ethernet backbone for subsystem control and to move the payload data to and from the SDRs and to the A WG. Test software in the test controller implements ETSI Digital Video Broadcast (DVB) standards for the baseband and high layer data. The test software is based around a Ground Support Equipment Operating System (GSEOS) environment, which provides test logging and automation for a traceable, repeatable environmental test campaign. The test software maintains compatibility with an embedded test software (ETS) on the UUT, which provides customized interfaces for moving higher rate data to and from the UUT.","PeriodicalId":298798,"journal":{"name":"2022 IEEE AUTOTESTCON","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTOTESTCON47462.2022.9984776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Demand for satellite communication (SATCOM) infrastructure has led to the development of a geosynchronous spacecraft to enable communications between ground and mobile terminals for video data. When fully loaded, the ground support equipment (GSE) provides handling for payload data of 1.2 Gbps distributed across more than 100 continuous carrier terminals or 1000 time division multiple access (TDMA) terminals. This paper assesses the implementation of GSE to verify the hardware design of this multi-radio, multi-terminal avionics unit. The GSE contains a unique design based around a communications slice, each of which provides one of four L-band interfaces to the unit under test (UUT) for both transmit and receive data. The GSE uses a channel emulator to impose impairments on the radio frequency (RF) signals to include noise, propagation delay, and dynamic frequency offset. For adjacent channel loading, the GSE contains an arbitrary waveform generator (A WG) that can implement simulated terminals in a composite waveform. This function complements the slices that contain servers connected to software defined radios (SDRs). The GSE employs an Ethernet backbone for subsystem control and to move the payload data to and from the SDRs and to the A WG. Test software in the test controller implements ETSI Digital Video Broadcast (DVB) standards for the baseband and high layer data. The test software is based around a Ground Support Equipment Operating System (GSEOS) environment, which provides test logging and automation for a traceable, repeatable environmental test campaign. The test software maintains compatibility with an embedded test software (ETS) on the UUT, which provides customized interfaces for moving higher rate data to and from the UUT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卫星通信航电保障设备的研制
对卫星通信(SATCOM)基础设施的需求导致了地球同步航天器的发展,以实现地面和移动终端之间的视频数据通信。当满载时,地面支持设备(GSE)为分布在100多个连续载波终端或1000个时分多址(TDMA)终端上的1.2 Gbps的有效载荷数据提供处理。本文对GSE的实现进行了评估,以验证该多无线电、多终端航电单元的硬件设计。GSE包含基于通信片的独特设计,每个通信片为被测单元(UUT)提供四个l波段接口中的一个,用于发送和接收数据。GSE使用信道模拟器对射频(RF)信号施加损害,包括噪声、传播延迟和动态频率偏移。对于相邻信道加载,GSE包含一个任意波形发生器(WG),可以在复合波形中实现模拟终端。此功能补充了包含连接到软件定义无线电(sdr)的服务器的片。GSE采用以太网主干进行子系统控制,并将有效载荷数据从sdr和A WG之间来回移动。测试控制器中的测试软件对基带和高层数据执行ETSI数字视频广播(DVB)标准。测试软件基于地面支持设备操作系统(GSEOS)环境,为可追溯、可重复的环境测试活动提供测试记录和自动化。测试软件与UUT上的嵌入式测试软件(ETS)保持兼容性,该软件提供定制接口,用于向UUT和从UUT移动更高速率的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Next Generation Streaming Data Test System for High Bandwidth Applications Information Assurance in modern ATE Towards Continuous Cyber Testing with Reinforcement Learning for Whole Campaign Emulation The Dichotomy of Commonality versus Form Factor for O-level ATE Securing ATE Using the DoD's Risk Management Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1