A face detection method via ensemble of four versions of YOLOs

Sanaz Khalili, A. Shakiba
{"title":"A face detection method via ensemble of four versions of YOLOs","authors":"Sanaz Khalili, A. Shakiba","doi":"10.1109/MVIP53647.2022.9738779","DOIUrl":null,"url":null,"abstract":"We implemented a real-time ensemble model for face detection by combining the results of YOLO v1 to v4. We used the WIDER FACE benchmark for training YOLOv1 to v4 in the Darknet framework. Then, we ensemble their results by two methods, namely, WBF (Weighted boxes fusion) and NMW (Non-maximum weighted). The experimental analysis showed that the mAP increases in the WBF ensemble of the models for all the easy, medium, and hard images in the datasets by 7.81%, 22.91%, and 12.96%, respectively. These numbers are 6.25%, 20.83%, and 11.11% for the NMW ensemble.","PeriodicalId":184716,"journal":{"name":"2022 International Conference on Machine Vision and Image Processing (MVIP)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP53647.2022.9738779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We implemented a real-time ensemble model for face detection by combining the results of YOLO v1 to v4. We used the WIDER FACE benchmark for training YOLOv1 to v4 in the Darknet framework. Then, we ensemble their results by two methods, namely, WBF (Weighted boxes fusion) and NMW (Non-maximum weighted). The experimental analysis showed that the mAP increases in the WBF ensemble of the models for all the easy, medium, and hard images in the datasets by 7.81%, 22.91%, and 12.96%, respectively. These numbers are 6.25%, 20.83%, and 11.11% for the NMW ensemble.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于四个版本的yolo集合的人脸检测方法
我们将YOLO v1和v4的结果结合起来,实现了一个实时的人脸检测集成模型。我们在Darknet框架中使用WIDER FACE基准来训练YOLOv1到v4。然后,我们通过加权盒融合(WBF)和非最大加权融合(NMW)两种方法对结果进行综合。实验分析表明,对于所有数据集中的易、中、硬图像,mAP分别使模型的WBF集合提高了7.81%、22.91%和12.96%。这些数字分别为6.25%、20.83%和11.11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning on Semantic Segmentation for Sugar Crystal Analysis Evaluation of the Image Processing Technique in Interpretation of Polar Plot Characteristics of Transformer Frequency Response Novel Gaussian Mixture-based Video Coding for Fixed Background Video Streaming Automated Cell Tracking Using Adaptive Multi-stage Kalman Filter In Time-laps Images Facial Expression Recognition: a Comparison with Different Classical and Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1