Slow motion video sequences database for freezing artifact detection

Ela Vrtar, M. Herceg, M. Vranješ, Danijel Babic
{"title":"Slow motion video sequences database for freezing artifact detection","authors":"Ela Vrtar, M. Herceg, M. Vranješ, Danijel Babic","doi":"10.1109/ZINC58345.2023.10174092","DOIUrl":null,"url":null,"abstract":"In this paper, a new video sequence database, called Slow Motion Video Sequences (SMVS), is developed. The developed SMVS database consists of 30 video sequences with very low temporal activities, where every sequence contains a freezing artifact. The performance of two freezing detection algorithms, the Histogram-Based Freezing Artifacts Detection Algorithm (HBFDA) and the Real-Time no-reference Freezing Detection Algorithm (RTFDA) are tested on the developed database. The testing results show the poor performance of the tested algorithms.","PeriodicalId":383771,"journal":{"name":"2023 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC58345.2023.10174092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new video sequence database, called Slow Motion Video Sequences (SMVS), is developed. The developed SMVS database consists of 30 video sequences with very low temporal activities, where every sequence contains a freezing artifact. The performance of two freezing detection algorithms, the Histogram-Based Freezing Artifacts Detection Algorithm (HBFDA) and the Real-Time no-reference Freezing Detection Algorithm (RTFDA) are tested on the developed database. The testing results show the poor performance of the tested algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于冻结伪影检测的慢动作视频序列数据库
本文开发了一种新的视频序列数据库——慢动作视频序列(SMVS)。开发的SMVS数据库由30个具有非常低时间活动的视频序列组成,其中每个序列包含一个冻结伪影。在开发的数据库上测试了基于直方图的冻结伪影检测算法(HBFDA)和实时无参考冻结检测算法(RTFDA)的性能。测试结果表明,所测试算法的性能较差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Representing Multifunctional Devices in Voice-Controlled Systems Improving Lane Annotation in Autonomous Driving Data Sets with Classical Computer Vision Techniques Security enhancement of LSB-based audio steganography method ZINC 2023 Organizing Team Travel Route Planning in Smart Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1