An Analysis of Dynamic Branch Prediction Schemes on System Workloads

Nicolas Gloy, C. Young, Bradley Chen, Michael D. Smith
{"title":"An Analysis of Dynamic Branch Prediction Schemes on System Workloads","authors":"Nicolas Gloy, C. Young, Bradley Chen, Michael D. Smith","doi":"10.1145/232973.232977","DOIUrl":null,"url":null,"abstract":"Recent studies of dynamic branch prediction schemes rely almost exclusively on user-only simulations to evaluate performance. We find that an evaluation of these schemes with user and kernel references often leads to different conclusions. By analyzing our own Atom-generated system traces and the system traces from the Instruction Benchmark Suite, we quantify the effects of kernel and user interactions on branch prediction accuracy. We find that user-only traces yield accurate prediction results only when the kernel accounts for less than 5% of the total executed instructions. Schemes that appear to predict well under user-only traces are not always the most effective on full-system traces: the recently-proposed two-level adaptive schemes can suffer from higher aliasing than the original per-branch 2-bit counter scheme. We also find that flushing the branch history state at fixed intervals does not accurately model the true effects of user/kernel interaction.","PeriodicalId":415354,"journal":{"name":"23rd Annual International Symposium on Computer Architecture (ISCA'96)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual International Symposium on Computer Architecture (ISCA'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/232973.232977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

Recent studies of dynamic branch prediction schemes rely almost exclusively on user-only simulations to evaluate performance. We find that an evaluation of these schemes with user and kernel references often leads to different conclusions. By analyzing our own Atom-generated system traces and the system traces from the Instruction Benchmark Suite, we quantify the effects of kernel and user interactions on branch prediction accuracy. We find that user-only traces yield accurate prediction results only when the kernel accounts for less than 5% of the total executed instructions. Schemes that appear to predict well under user-only traces are not always the most effective on full-system traces: the recently-proposed two-level adaptive schemes can suffer from higher aliasing than the original per-branch 2-bit counter scheme. We also find that flushing the branch history state at fixed intervals does not accurately model the true effects of user/kernel interaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于系统负载的动态分支预测方案分析
最近的动态分支预测方案的研究几乎完全依赖于用户模拟来评估性能。我们发现用用户和内核参考对这些方案进行评估往往会得出不同的结论。通过分析我们自己的atom生成的系统跟踪和来自指令基准测试套件的系统跟踪,我们量化了内核和用户交互对分支预测准确性的影响。我们发现,只有当内核执行的指令少于总执行指令的5%时,纯用户跟踪才会产生准确的预测结果。在仅用户走线下预测良好的方案并不总是在全系统走线上最有效:最近提出的两级自适应方案可能比原始的每分支2位计数器方案遭受更高的混叠。我们还发现,以固定的间隔刷新分支历史状态并不能准确地模拟用户/内核交互的真实效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Bandwidth Limitations of Future Microprocessors Missing the Memory Wall: The Case for Processor/Memory Integration Instruction Prefetching of Systems Codes with Layout Optimized for Reduced Cache Misses STiNG: A CC-NUMA Computer System for the Commercial Marketplace High-Bandwidth Address Translation for Multiple-Issue Processors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1