Geostatistical Filtering of Noisy Seismic Data Using Stochastic Partial Differential Equations (SPDE)

M. Pereira, C. Magneron, N. Desassis
{"title":"Geostatistical Filtering of Noisy Seismic Data Using Stochastic Partial Differential Equations (SPDE)","authors":"M. Pereira, C. Magneron, N. Desassis","doi":"10.3997/2214-4609.201902264","DOIUrl":null,"url":null,"abstract":"Summary An innovative geostatistical filtering approach is presented in this paper. It is based on Stochastic Partial Differential Equations (SPDE) and the idea is to solve kriging equations with the finite element method which requires the subdivision of a whole domain into simpler parts. This approach enables to deal with local variographic parameters while using a unique neighborhood even on large datasets. It opens the door to the operational processing of the most complex noise issues on seismic data. Post-stack and pre-stack. The methodology is described in details and two case studies are presented.","PeriodicalId":186806,"journal":{"name":"Petroleum Geostatistics 2019","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geostatistics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary An innovative geostatistical filtering approach is presented in this paper. It is based on Stochastic Partial Differential Equations (SPDE) and the idea is to solve kriging equations with the finite element method which requires the subdivision of a whole domain into simpler parts. This approach enables to deal with local variographic parameters while using a unique neighborhood even on large datasets. It opens the door to the operational processing of the most complex noise issues on seismic data. Post-stack and pre-stack. The methodology is described in details and two case studies are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机偏微分方程(SPDE)的地震噪声地质统计滤波
本文提出了一种新颖的地统计滤波方法。它基于随机偏微分方程(SPDE),其思想是用有限元法求解克里格方程,这需要将整个区域细分为更简单的部分。这种方法能够在处理局部变差参数的同时,即使在大型数据集上使用唯一的邻域。它为地震数据中最复杂的噪声问题的操作处理打开了大门。栈后和栈前。详细描述了该方法,并提出了两个案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forward Model Applied to Channelized Turbidite Systems: A Case Study of the Benin Major Valley Fill Stochastic Seismic Inversion Based on a Fuzzy Model A Bayesian Approach for Full-waveform Inversion Using Wide-aperture Seismic Data Ensemble-based Kernel Learning to Handle Rock-physics-model Imperfection in Seismic History Matching: A Real Field Case Study Features of Factor Models in Seismic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1