Online learning with side information

Xiao Xu, Sattar Vakili, Qing Zhao, A. Swami
{"title":"Online learning with side information","authors":"Xiao Xu, Sattar Vakili, Qing Zhao, A. Swami","doi":"10.1109/MILCOM.2017.8170860","DOIUrl":null,"url":null,"abstract":"An online learning problem with side information is considered. The problem is formulated as a graph structured stochastic Multi-Armed Bandit (MAB). Each node in the graph represents an arm in the bandit problem and an edge between two arms indicates closeness in their mean rewards. It is shown that such side information induces a Unit Interval Graph and several graph properties can be leveraged to achieve a sublinear regret in the number of arms while preserving the optimal logarithmic regret in time. A lower bound on regret is established and a hierarchical learning policy that is order optimal in terms of both the number of arms and the learning horizon is developed.","PeriodicalId":113767,"journal":{"name":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2017.8170860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An online learning problem with side information is considered. The problem is formulated as a graph structured stochastic Multi-Armed Bandit (MAB). Each node in the graph represents an arm in the bandit problem and an edge between two arms indicates closeness in their mean rewards. It is shown that such side information induces a Unit Interval Graph and several graph properties can be leveraged to achieve a sublinear regret in the number of arms while preserving the optimal logarithmic regret in time. A lower bound on regret is established and a hierarchical learning policy that is order optimal in terms of both the number of arms and the learning horizon is developed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线学习附带信息
考虑了一个带有侧信息的在线学习问题。将该问题表述为图结构随机多臂强盗(MAB)问题。图中的每个节点表示强盗问题中的一个分支,两个分支之间的一条边表示它们的平均报酬接近。结果表明,这些边信息可以诱导出一个单位间隔图,并且可以利用几个图的性质来实现臂数的次线性遗憾,同时在时间上保持最优对数遗憾。建立了后悔度的下界,提出了在臂数和学习视界两方面都是序最优的分层学习策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved target-tracking process in PCL Evasion and causative attacks with adversarial deep learning Performance of selection DF scheme for a relay system with non-identical Rician fading Single-channel blind separation of co-frequency PSK signals with unknown carrier frequency offsets Design of a software defined radio-based tactical DSA network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1