An improvment of weight scheme on adaBoost in the presence of noisy data

Shihai Wang, Geng Li
{"title":"An improvment of weight scheme on adaBoost in the presence of noisy data","authors":"Shihai Wang, Geng Li","doi":"10.1109/ACPR.2011.6166557","DOIUrl":null,"url":null,"abstract":"The first strand of this research is concerned with the classification noise issue. Classification noise, (worry labeling), is a further consequence of the difficulties in accurately labeling the real training data. For efficient reduction of the negative influence produced by noisy samples, we propose a new weight scheme with a nonlinear model with the local proximity assumption for the Boosting algorithm. The effectiveness of our method has been evaluated by using a set of University of California Irvine Machine Learning Repository (UCI) [1] benchmarks. We report promising results.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The first strand of this research is concerned with the classification noise issue. Classification noise, (worry labeling), is a further consequence of the difficulties in accurately labeling the real training data. For efficient reduction of the negative influence produced by noisy samples, we propose a new weight scheme with a nonlinear model with the local proximity assumption for the Boosting algorithm. The effectiveness of our method has been evaluated by using a set of University of California Irvine Machine Learning Repository (UCI) [1] benchmarks. We report promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
adaBoost中存在噪声数据时权值方案的改进
本研究的第一部分涉及分类噪声问题。分类噪声(忧虑标注)是难以准确标注真实训练数据的进一步后果。为了有效地降低噪声样本产生的负面影响,我们提出了一种新的加权算法,该算法采用非线性模型和局部接近假设。我们的方法的有效性已经通过使用一组加州大学欧文分校机器学习存储库(UCI)[1]基准进行了评估。我们报告了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1