Medical images stabilization using sparse-induced similarity measure

A. Hariri, Soroush Arabshahi, A. Ghafari, E. Fatemizadeh
{"title":"Medical images stabilization using sparse-induced similarity measure","authors":"A. Hariri, Soroush Arabshahi, A. Ghafari, E. Fatemizadeh","doi":"10.1109/PRIA.2015.7161624","DOIUrl":null,"url":null,"abstract":"Medical image stabilization has been widely used for clinical imaging modalities. Registration is a conspicuous stage for stabilizing dynamic medical images. Some of regular methods are sensitive to bias field distortion. Sparse-induced similarity measure (SISM) is a robust registering method against spatially-varying intensity distortions which is not evitable on clinical imaging instruments. This paper presents a method for registering medical images to average of captured images using SISM method to avoid spatially-varying intensity distortions like Bias field. Proposed method is compared with SSD and MI similarity measure based registrations. Results show enhancement in stabilizing medical dynamic images with SISM method.","PeriodicalId":163817,"journal":{"name":"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2015.7161624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Medical image stabilization has been widely used for clinical imaging modalities. Registration is a conspicuous stage for stabilizing dynamic medical images. Some of regular methods are sensitive to bias field distortion. Sparse-induced similarity measure (SISM) is a robust registering method against spatially-varying intensity distortions which is not evitable on clinical imaging instruments. This paper presents a method for registering medical images to average of captured images using SISM method to avoid spatially-varying intensity distortions like Bias field. Proposed method is compared with SSD and MI similarity measure based registrations. Results show enhancement in stabilizing medical dynamic images with SISM method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用稀疏诱导相似度量的医学图像稳定
医学稳像技术已广泛应用于临床影像学。配准是稳定动态医学图像的重要环节。一些常规方法对偏置场畸变很敏感。稀疏诱导相似度测量(SISM)是一种鲁棒的配准方法,可以对抗临床成像仪器中不可避免的空间变化强度失真。本文提出了一种利用SISM方法对医学图像进行平均配准的方法,以避免Bias场等空间变化的强度畸变。将该方法与基于SSD和MI相似度测度的配准方法进行了比较。结果表明,SISM方法对稳定医学动态图像有增强作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retinal vessel segmentation using system fuzzy and DBSCAN algorithm A new robust semi-blind image watermarking based on block classification and visual cryptography A binary-segmentation algorithm based on shearlet transform and eigenvectors CGSR features: Toward RGB-D image matching using color gradient description of geometrically stable regions Facial expression recognition using high order directional derivative local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1