Weighted grid Principal Component Analysis hashing

Xiancheng Zhou, Zhi-Qian Huang, Wing W. Y. Ng
{"title":"Weighted grid Principal Component Analysis hashing","authors":"Xiancheng Zhou, Zhi-Qian Huang, Wing W. Y. Ng","doi":"10.1109/ICMLC.2014.7009117","DOIUrl":null,"url":null,"abstract":"Principal Component Analysis (PCA) is one of the most widely used components of hashing. In this paper, we propose three PCA-based hashing methods to improve the performance of the Principal Component Hashing (PCH). Different principal components have different among of variances of data. In the PCH, each principal component corresponds to a hash function. Hence, the PCH treats each principal component to have the same importance which will lead to the loss of much information in constructing hashing table. To deal with this shortage, we propose the weighted PCH (WPCH), the grid PCH (GPCH) and the weighted grid PCH (WGPCH).","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Principal Component Analysis (PCA) is one of the most widely used components of hashing. In this paper, we propose three PCA-based hashing methods to improve the performance of the Principal Component Hashing (PCH). Different principal components have different among of variances of data. In the PCH, each principal component corresponds to a hash function. Hence, the PCH treats each principal component to have the same importance which will lead to the loss of much information in constructing hashing table. To deal with this shortage, we propose the weighted PCH (WPCH), the grid PCH (GPCH) and the weighted grid PCH (WGPCH).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加权网格主成分分析哈希
主成分分析(PCA)是哈希中使用最广泛的成分之一。本文提出了三种基于pca的哈希算法来提高主成分哈希算法(PCH)的性能。不同的主成分对数据的方差有不同的影响。在PCH中,每个主成分对应一个哈希函数。因此,PCH认为每个主成分具有相同的重要性,这将导致在构造哈希表时丢失大量信息。为了解决这一不足,我们提出了加权PCH (WPCH)、网格PCH (GPCH)和加权网格PCH (WGPCH)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solving the maximum satisfiability problem by fuzzy converting it into a continuous optimization problem An intelligent fall detection system using triaxial accelerometer integrated by active RFID Documents clustering based on max-correntropy nonnegative matrix factorization Experimental study of phase sensitive detection technique in ECT system Alveolar bone-loss area detection in periodontitis radiographs using hybrid of intensity and texture analyzed based on FBM model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1