A Deep Learning BERT-Based Approach to Person-Job Fit in Talent Recruitment

E. Abdollahnejad, Marilynn Kalman, B. Far
{"title":"A Deep Learning BERT-Based Approach to Person-Job Fit in Talent Recruitment","authors":"E. Abdollahnejad, Marilynn Kalman, B. Far","doi":"10.1109/CSCI54926.2021.00091","DOIUrl":null,"url":null,"abstract":"Although the widespread use of the Internet provides job recruiters with a larger pool to select the most qualified candidates, the tedious process of going over hundreds of resumes makes a fair and objective decision making more difficult. This paper proposes an end-to-end BERT-based framework to decrease the workload and expedite the shortlisting process of job applicants. Utilizing historical-records data of thousands failed and successful job applications, our model simulates the recruiters’ decision-making process by the state-of-the-art BERT algorithm. The results show that BERT outperforms a variety of models by a high margin.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Although the widespread use of the Internet provides job recruiters with a larger pool to select the most qualified candidates, the tedious process of going over hundreds of resumes makes a fair and objective decision making more difficult. This paper proposes an end-to-end BERT-based framework to decrease the workload and expedite the shortlisting process of job applicants. Utilizing historical-records data of thousands failed and successful job applications, our model simulates the recruiters’ decision-making process by the state-of-the-art BERT algorithm. The results show that BERT outperforms a variety of models by a high margin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人才招聘中基于深度学习bert的人职契合度分析
尽管互联网的广泛使用为招聘人员提供了一个更大的人才库来挑选最合格的候选人,但浏览数百份简历的繁琐过程使公平客观的决策变得更加困难。本文提出了一个端到端的基于bert的框架,以减少工作量,加快求职者的筛选过程。利用数千份失败和成功的工作申请的历史记录数据,我们的模型通过最先进的BERT算法模拟招聘人员的决策过程。结果表明,BERT比各种模型都要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remote Video Surveillance Effects of Social Distancing Intention, Affective Risk Perception, and Cabin Fever Syndrome on Perceived Value of E-learning : Type of submission: Late Breaking Paper / Most relevant symposium: CSCI-ISED Cybersecurity Integration: Deploying Critical Infrastructure Security and Resilience Topics into the Undergraduate Curriculum Distributed Algorithms for k-Coverage in Mobile Sensor Networks Software Development Methodologies for Virtual Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1