Use of forehead bio-signals for controlling an Intelligent Wheelchair

Lai Wei, Huosheng Hu, Kui Yuan
{"title":"Use of forehead bio-signals for controlling an Intelligent Wheelchair","authors":"Lai Wei, Huosheng Hu, Kui Yuan","doi":"10.1109/ROBIO.2009.4912988","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to classify human facial movement based on multi-channel forehead bio-signals. Five face movements form three face regions: forehead, eye and jaw are selected and classified in back propagation artificial neural networks (BPANN) by using a combination of transient and steady features from EMG and EOG waveforms. The identified face movements are subsequently employed to generate five control commands for controlling a simulated Intelligent Wheelchair. A human-machine interface (HMI) is designed to map movement patterns into corresponding control commands via a logic control table. The simulation result shows the feasibility and performance of the proposed system, which can be extended into real-world applications as a control interface for disabled and elderly users.","PeriodicalId":321332,"journal":{"name":"2008 IEEE International Conference on Robotics and Biomimetics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Biomimetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2009.4912988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

This paper presents a novel method to classify human facial movement based on multi-channel forehead bio-signals. Five face movements form three face regions: forehead, eye and jaw are selected and classified in back propagation artificial neural networks (BPANN) by using a combination of transient and steady features from EMG and EOG waveforms. The identified face movements are subsequently employed to generate five control commands for controlling a simulated Intelligent Wheelchair. A human-machine interface (HMI) is designed to map movement patterns into corresponding control commands via a logic control table. The simulation result shows the feasibility and performance of the proposed system, which can be extended into real-world applications as a control interface for disabled and elderly users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用前额生物信号控制智能轮椅
提出了一种基于多通道前额生物信号的人脸运动分类方法。通过结合EMG和EOG波形的瞬态和稳态特征,在反向传播人工神经网络(BPANN)中选择并分类了前额、眼睛和下巴三个面部区域的五种面部运动。识别的面部动作随后被用来生成五个控制命令来控制模拟的智能轮椅。设计了人机界面(HMI),通过逻辑控制表将运动模式映射为相应的控制命令。仿真结果表明了该系统的可行性和性能,可以作为残疾人和老年人的控制接口扩展到实际应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A control allocation approach for energetic swarm control of wheeled mobile robots Octopus-inspired grasp-synergies for continuum manipulators Soft tissue traversal with zero net force: Feasibility study of a biologically inspired design based on reciprocal motion 3D SLAM for omnidirectional camera Robot catching with high manipulability grasp configuration using vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1