A combined radiomics and cyst fluid inflammatory markers model to predict preoperative risk in pancreatic cystic lesions

T. Williams, K. Harrington, Sharon A. Lawrence, Jayasree Chakraborty, M. A. Efishat, M. Attiyeh, G. Askan, Yuting Chou, A. Pulvirenti, C. McIntyre, M. Gonen, O. Basturk, V. Balachandran, T. Kingham, M. D'Angelica, W. Jarnagin, J. Drebin, R. Do, P. Allen, Amber L. Simpson
{"title":"A combined radiomics and cyst fluid inflammatory markers model to predict preoperative risk in pancreatic cystic lesions","authors":"T. Williams, K. Harrington, Sharon A. Lawrence, Jayasree Chakraborty, M. A. Efishat, M. Attiyeh, G. Askan, Yuting Chou, A. Pulvirenti, C. McIntyre, M. Gonen, O. Basturk, V. Balachandran, T. Kingham, M. D'Angelica, W. Jarnagin, J. Drebin, R. Do, P. Allen, Amber L. Simpson","doi":"10.1117/12.2566425","DOIUrl":null,"url":null,"abstract":"This paper contributes to the burgeoning field of surgical data science. Specifically, multi-modal integration of relevant patient data is used to determine who should undergo a complex pancreatic resection. Intraductal papillary mucinous neoplasms (IPMNs) represent cystic precursor lesions of pancreatic cancer with varying risk for malignancy. We combine radiomic analysis of diagnostic computed tomography (CT) with protein markers extracted from the cyst fluid to create a unified prediction model to identify high-risk IPMNs. Patients with high-risk IPMN would be sent for resection, whereas patients with low-risk cystic lesions would be spared an invasive procedure. We extracted radiomic features from CT scans and combined this with cyst-fluid markers. The cyst fluid model yielded an area under the curve (AUC) of 0.74. Adding the QI model improved performance with an AUC of 0.88. Radiomic analysis of routinely acquired CT scans combined with cyst fluid inflammatory markers provides accurate prediction of risk of pancreatic cancer progression.","PeriodicalId":302939,"journal":{"name":"Medical Imaging: Image-Guided Procedures","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Imaging: Image-Guided Procedures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2566425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper contributes to the burgeoning field of surgical data science. Specifically, multi-modal integration of relevant patient data is used to determine who should undergo a complex pancreatic resection. Intraductal papillary mucinous neoplasms (IPMNs) represent cystic precursor lesions of pancreatic cancer with varying risk for malignancy. We combine radiomic analysis of diagnostic computed tomography (CT) with protein markers extracted from the cyst fluid to create a unified prediction model to identify high-risk IPMNs. Patients with high-risk IPMN would be sent for resection, whereas patients with low-risk cystic lesions would be spared an invasive procedure. We extracted radiomic features from CT scans and combined this with cyst-fluid markers. The cyst fluid model yielded an area under the curve (AUC) of 0.74. Adding the QI model improved performance with an AUC of 0.88. Radiomic analysis of routinely acquired CT scans combined with cyst fluid inflammatory markers provides accurate prediction of risk of pancreatic cancer progression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联合放射组学和囊肿液炎症标志物模型预测胰腺囊性病变术前风险
本文对外科数据科学这一新兴领域做出了贡献。具体来说,多模式整合相关患者数据用于确定谁应该接受复杂的胰腺切除术。导管内乳头状粘液瘤(IPMNs)是胰腺癌的囊性前体病变,具有不同的恶性风险。我们将诊断性计算机断层扫描(CT)的放射组学分析与从囊肿液中提取的蛋白质标记物相结合,以创建一个统一的预测模型来识别高风险IPMNs。高风险IPMN患者将被送去切除,而低风险囊性病变患者将免于侵入性手术。我们从CT扫描中提取放射学特征,并将其与囊肿液标记相结合。囊液模型的曲线下面积(AUC)为0.74。添加QI模型提高了性能,AUC为0.88。放射组学分析常规获得的CT扫描结合囊肿液炎症标志物提供胰腺癌进展风险的准确预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of proton beam ablation in myocardial infarct tissue using delayed contrast-enhanced magnetic resonance imaging (Erratum) Intraoperative thermographic perfusion mapping in neurosurgery using regularized semiparametric regression (Conference Presentation) Multi-body registration for fracture reduction in orthopaedic trauma surgery Patient-specific deep deformation models (PsDDM) to register planning and interventional ultrasound volumes in image fusion-guided interventions Modeling the surgical exposure of anatomy in robot-assisted laparoscopic partial nephrectomy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1