{"title":"OPERATIONAL ENERGY SAVING IN BUILDINGS: A COMPARISON OF GREEN VS CONVENTIONAL WALL","authors":"U. Madushika, T. Ramachandra, N. Zainudeen","doi":"10.31705/WCS.2021.37","DOIUrl":null,"url":null,"abstract":"The green wall concept has been introduced as one of the solutions to reduce energy demand for ventilation requirements while improving the natural vegetation in dense urban areas. Past studies revealed that the energy-saving of green walls can vary substantially, from 35% to 90% across countries such as United Kingdom (UK), Canada, Russia, Greece, China, Saudi Arabia, India, and Brazil. Given these differences in energy saving of green walls due to climatic conditions and other reasons, direct application of such findings to the Sri Lankan context is questionable. Therefore, this study aimed to assess the thermal performance of green wall applications in Sri Lanka through a case study analysis of an indirect green façade with a comparative conventional wall. The required data were extracted through on-site temperature measurements from different points of both the exterior and interior wall surfaces of each building in different time intervals per day for a period of fourteen days spanning from October to November. The analysis shows that the green walls contribute to 21% - 36% of temperature difference compared to the conventional wall. Eventually, this results in 0.06 kWh of energy-saving per m2 of wall area, and thereby green walls contribute to the 80% energy saving for ventilation requirements. Hence, the study recommends that the use of green walls can be considered as one of the energy efficiency solutions while improving natural vegetation in tropical climatic cities and absorbing other benefits of green walls.","PeriodicalId":320967,"journal":{"name":"Proceedings of the 9th World Construction Symposium 2021 on Reshaping construction: Strategic, Structural and Cultural Transformations towards the 'Next Normal'","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th World Construction Symposium 2021 on Reshaping construction: Strategic, Structural and Cultural Transformations towards the 'Next Normal'","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31705/WCS.2021.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The green wall concept has been introduced as one of the solutions to reduce energy demand for ventilation requirements while improving the natural vegetation in dense urban areas. Past studies revealed that the energy-saving of green walls can vary substantially, from 35% to 90% across countries such as United Kingdom (UK), Canada, Russia, Greece, China, Saudi Arabia, India, and Brazil. Given these differences in energy saving of green walls due to climatic conditions and other reasons, direct application of such findings to the Sri Lankan context is questionable. Therefore, this study aimed to assess the thermal performance of green wall applications in Sri Lanka through a case study analysis of an indirect green façade with a comparative conventional wall. The required data were extracted through on-site temperature measurements from different points of both the exterior and interior wall surfaces of each building in different time intervals per day for a period of fourteen days spanning from October to November. The analysis shows that the green walls contribute to 21% - 36% of temperature difference compared to the conventional wall. Eventually, this results in 0.06 kWh of energy-saving per m2 of wall area, and thereby green walls contribute to the 80% energy saving for ventilation requirements. Hence, the study recommends that the use of green walls can be considered as one of the energy efficiency solutions while improving natural vegetation in tropical climatic cities and absorbing other benefits of green walls.