L1 rotation averaging using the Weiszfeld algorithm

R. Hartley, Khurrum Aftab, J. Trumpf
{"title":"L1 rotation averaging using the Weiszfeld algorithm","authors":"R. Hartley, Khurrum Aftab, J. Trumpf","doi":"10.1109/CVPR.2011.5995745","DOIUrl":null,"url":null,"abstract":"We consider the problem of rotation averaging under the L1 norm. This problem is related to the classic Fermat-Weber problem for finding the geometric median of a set of points in IRn. We apply the classical Weiszfeld algorithm to this problem, adapting it iteratively in tangent spaces of SO(3) to obtain a provably convergent algorithm for finding the L1 mean. This results in an extremely simple and rapid averaging algorithm, without the need for line search. The choice of L1 mean (also called geometric median) is motivated by its greater robustness compared with rotation averaging under the L2 norm (the usual averaging process). We apply this problem to both single-rotation averaging (under which the algorithm provably finds the global L1 optimum) and multiple rotation averaging (for which no such proof exists). The algorithm is demonstrated to give markedly improved results, compared with L2 averaging. We achieve a median rotation error of 0.82 degrees on the 595 images of the Notre Dame image set.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"177","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 177

Abstract

We consider the problem of rotation averaging under the L1 norm. This problem is related to the classic Fermat-Weber problem for finding the geometric median of a set of points in IRn. We apply the classical Weiszfeld algorithm to this problem, adapting it iteratively in tangent spaces of SO(3) to obtain a provably convergent algorithm for finding the L1 mean. This results in an extremely simple and rapid averaging algorithm, without the need for line search. The choice of L1 mean (also called geometric median) is motivated by its greater robustness compared with rotation averaging under the L2 norm (the usual averaging process). We apply this problem to both single-rotation averaging (under which the algorithm provably finds the global L1 optimum) and multiple rotation averaging (for which no such proof exists). The algorithm is demonstrated to give markedly improved results, compared with L2 averaging. We achieve a median rotation error of 0.82 degrees on the 595 images of the Notre Dame image set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Weiszfeld算法进行L1旋转平均
考虑L1范数下的旋转平均问题。这个问题与经典的求IRn中一组点的几何中位数的费马-韦伯问题有关。我们将经典的Weiszfeld算法应用于该问题,在SO(3)的切空间中进行迭代适应,得到了一个可证明收敛的L1均值求解算法。这导致了一个非常简单和快速的平均算法,而不需要线搜索。选择L1均值(也称为几何中位数)的动机是,与L2范数下的旋转平均(通常的平均过程)相比,L1均值具有更强的鲁棒性。我们将此问题应用于单次旋转平均(算法可证明地找到全局L1最优)和多次旋转平均(不存在这样的证明)。与L2平均相比,该算法得到了明显改善的结果。我们在圣母大学图像集的595张图像上实现了0.82度的中位数旋转误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linearity of each channel pixel values from a surface in and out of shadows and its applications Continuously tracking and see-through occlusion based on a new hybrid synthetic aperture imaging model Learning a blind measure of perceptual image quality Joint segmentation and classification of human actions in video Probabilistic simultaneous pose and non-rigid shape recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1