Training of line echo canceller with PRBS signals

A. I. Bhatti, S. I. Shah
{"title":"Training of line echo canceller with PRBS signals","authors":"A. I. Bhatti, S. I. Shah","doi":"10.1109/INCC.2004.1366581","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of convergence time reduction for the line echo cancellation problem in the context of VoIP applications. Training signals can be used for this purpose. Intuitively speaking, any decorrelated signal, such as white noise, can be used as a training signal. C. Antweiler and H.-G. Symanzik (see Proc. ICASSP-1995, p.3031-4, 1995) have shown that a certain signal, called perfect sequence, can be such a training signal. The method for generating such signals is not easy to use, neither can it be extended to arbitrary lengths. The authors propose another candidate signal, called maximum length pseudo random binary sequence (mlPRBS), to be a perfect sequence. The conditions on such a signal are further analyzed and highlighted. It is shown that the proposed training signal fulfils such requirements. The claims are backed by simulation results. The simulation elements used are available in the public domain.","PeriodicalId":337263,"journal":{"name":"2004 International Networking and Communication Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Networking and Communication Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCC.2004.1366581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper addresses the problem of convergence time reduction for the line echo cancellation problem in the context of VoIP applications. Training signals can be used for this purpose. Intuitively speaking, any decorrelated signal, such as white noise, can be used as a training signal. C. Antweiler and H.-G. Symanzik (see Proc. ICASSP-1995, p.3031-4, 1995) have shown that a certain signal, called perfect sequence, can be such a training signal. The method for generating such signals is not easy to use, neither can it be extended to arbitrary lengths. The authors propose another candidate signal, called maximum length pseudo random binary sequence (mlPRBS), to be a perfect sequence. The conditions on such a signal are further analyzed and highlighted. It is shown that the proposed training signal fulfils such requirements. The claims are backed by simulation results. The simulation elements used are available in the public domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用PRBS信号训练线路回波消除器
本文研究了VoIP应用中线路回波消除问题的收敛时间缩短问题。训练信号可用于此目的。直观地说,任何去相关的信号,如白噪声,都可以作为训练信号。C.安特韦勒和h - g。赛门铁克(参见Proc. icasp -1995, p.3031-4, 1995)已经表明,一个特定的信号,称为完美序列,可以是这样一个训练信号。产生这种信号的方法不容易使用,也不能扩展到任意长度。作者提出了另一个候选信号,称为最大长度伪随机二进制序列(mlPRBS),作为一个完美序列。进一步分析并强调了产生这种信号的条件。实验表明,所提出的训练信号满足上述要求。这些说法得到了仿真结果的支持。所使用的模拟元素在公共领域是可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of MPLS technology and traffic engineering applications Multislot scheduling algorithm in ATM networks A high-capacity scheduling algorithm for systems employing embedded modulation A new video indexing and retrieval method for temporal textures using block-based cooccurrence statistics FLeSMA: a firewall level spam mitigation approach through a genetic classifier model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1