Analysis of standard clustering algorithms for grouping MEDLINE abstracts into evidence-based medicine intervention categories

V. Dobrynin, Y. Balykina, M. Kamalov
{"title":"Analysis of standard clustering algorithms for grouping MEDLINE abstracts into evidence-based medicine intervention categories","authors":"V. Dobrynin, Y. Balykina, M. Kamalov","doi":"10.1109/SCP.2015.7342223","DOIUrl":null,"url":null,"abstract":"The paper describes a process of clustering of article abstracts, taken from the largest bibliographic life sciences and biomedical information MEDLINE database into categories that correspond to types of medical interventions - types of patient treatments. Experiments were carried out to evaluate the quality of clustering for the following algorithms: K-means; K-means++; Hierarchical clustering, SIB (Sequential information bottleneck) together with the LSA (Latent Semantic Analysis) methods and MI (Mutual Information) which allow selecting feature vectors. Best results of clustering were achieved by K-means++ together with LSA then 210-dimensional space was chosen: Purity = 0.5719, Entropy = 1.3841, Normalized Entropy = 0.6299.","PeriodicalId":110366,"journal":{"name":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCP.2015.7342223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper describes a process of clustering of article abstracts, taken from the largest bibliographic life sciences and biomedical information MEDLINE database into categories that correspond to types of medical interventions - types of patient treatments. Experiments were carried out to evaluate the quality of clustering for the following algorithms: K-means; K-means++; Hierarchical clustering, SIB (Sequential information bottleneck) together with the LSA (Latent Semantic Analysis) methods and MI (Mutual Information) which allow selecting feature vectors. Best results of clustering were achieved by K-means++ together with LSA then 210-dimensional space was chosen: Purity = 0.5719, Entropy = 1.3841, Normalized Entropy = 0.6299.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEDLINE摘要循证医学干预分类标准聚类算法分析
本文描述了文章摘要聚类的过程,文章摘要取自最大的书目生命科学和生物医学信息MEDLINE数据库,按医疗干预类型(患者治疗类型)分类。实验评估了以下算法的聚类质量:K-means;k - means + +;分层聚类,SIB(顺序信息瓶颈),以及LSA(潜在语义分析)方法和MI(互信息)方法,允许选择特征向量。k -means++结合LSA聚类效果最好,选择210维空间:纯度= 0.5719,熵= 1.3841,归一化熵= 0.6299。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of mixtures of fullerene-containing products On the problem of stability of a planar equilibrum shape of a thin plate with through cracks Development of 2D Poisson equation C++ finite-difference solver for particle-in-cell method Algebraical aspects of parametrical decomposition method On the stability of solutions of a class of nonlinear nonautonomous systems with delay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1