{"title":"NUMERICAL INVESTIGATION OF TURBULENT FLOW THROUGH 900 MIXING ELBOW PIPE WITH DIFFERENT REYNOLDS NUMBER","authors":"Samir Kumar Das","doi":"10.26782/jmcms.2022.04.00005","DOIUrl":null,"url":null,"abstract":"This work presents a computational investigation of turbulent flow inside a mixing elbow pipe and this study focus on the behaviour of fluid flow in a mixing elbow. Mixing elbow is a region where two types of fluid flow with different parameters and high Reynolds number is intensively mixed together and is among typical geometries exactly where velocity, as well as temperature fluctuation, happen. A CFD model of turbulent flow in the elbow pipes is implemented using the ANSYS tool. RANS turbulent models, the k-ε model are used for the simulation and the variation of axial velocity, wall shear stress, and turbulent intensity along the length of the elbow pipes are studied. The fluid used for this purpose is water. The simulations are carried out with different Reynolds numbers rangings from 2,500 to 10,000.","PeriodicalId":254600,"journal":{"name":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","volume":"63 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26782/jmcms.2022.04.00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a computational investigation of turbulent flow inside a mixing elbow pipe and this study focus on the behaviour of fluid flow in a mixing elbow. Mixing elbow is a region where two types of fluid flow with different parameters and high Reynolds number is intensively mixed together and is among typical geometries exactly where velocity, as well as temperature fluctuation, happen. A CFD model of turbulent flow in the elbow pipes is implemented using the ANSYS tool. RANS turbulent models, the k-ε model are used for the simulation and the variation of axial velocity, wall shear stress, and turbulent intensity along the length of the elbow pipes are studied. The fluid used for this purpose is water. The simulations are carried out with different Reynolds numbers rangings from 2,500 to 10,000.