NUMERICAL INVESTIGATION OF TURBULENT FLOW THROUGH 900 MIXING ELBOW PIPE WITH DIFFERENT REYNOLDS NUMBER

Samir Kumar Das
{"title":"NUMERICAL INVESTIGATION OF TURBULENT FLOW THROUGH 900 MIXING ELBOW PIPE WITH DIFFERENT REYNOLDS NUMBER","authors":"Samir Kumar Das","doi":"10.26782/jmcms.2022.04.00005","DOIUrl":null,"url":null,"abstract":"This work presents a computational investigation of turbulent flow inside a mixing elbow pipe and this study focus on the behaviour of fluid flow in a mixing elbow. Mixing elbow is a region where two types of fluid flow with different parameters and high Reynolds number is intensively mixed together and is among typical geometries exactly where velocity, as well as temperature fluctuation, happen. A CFD model of turbulent flow in the elbow pipes is implemented using the ANSYS tool. RANS turbulent models, the k-ε model are used for the simulation and the variation of axial velocity, wall shear stress, and turbulent intensity along the length of the elbow pipes are studied. The fluid used for this purpose is water. The simulations are carried out with different Reynolds numbers rangings from 2,500 to 10,000.","PeriodicalId":254600,"journal":{"name":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","volume":"63 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26782/jmcms.2022.04.00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a computational investigation of turbulent flow inside a mixing elbow pipe and this study focus on the behaviour of fluid flow in a mixing elbow. Mixing elbow is a region where two types of fluid flow with different parameters and high Reynolds number is intensively mixed together and is among typical geometries exactly where velocity, as well as temperature fluctuation, happen. A CFD model of turbulent flow in the elbow pipes is implemented using the ANSYS tool. RANS turbulent models, the k-ε model are used for the simulation and the variation of axial velocity, wall shear stress, and turbulent intensity along the length of the elbow pipes are studied. The fluid used for this purpose is water. The simulations are carried out with different Reynolds numbers rangings from 2,500 to 10,000.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同雷诺数900混合弯头管内湍流流动的数值研究
本文对混合弯头管内的紊流进行了计算研究,重点研究了混合弯头管内流体的流动行为。混合弯头是两种不同参数和高雷诺数的流体流动密集混合的区域,是典型的几何形状之一,正是速度和温度波动发生的地方。利用ANSYS软件建立了弯头管内紊流的CFD模型。采用RANS湍流模型和k-ε模型进行模拟,研究了轴向速度、壁面剪应力和湍流强度沿弯头管长度的变化规律。用于此目的的液体是水。模拟在2500 ~ 10000雷诺数范围内进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
期刊最新文献
OSCILLATORY BEHAVIOR OF SOLUTIONS OF FRACTIONAL MATRIX DIFFERENTIAL EQUATIONS TWO PHASE SLIP FLOW OF BLOOD IN HEPATIC ARTERY WITH SPECIAL REFERENCE TO HEPATITIS B PREDICTION OF CONCRETE MIXTURE DESIGN AND COMPRESSIVE STRENGTH THROUGH DATA ANALYSIS AND MACHINE LEARNING INVESTIGATION ON PREDICTING FAMILY PLANNING AND WOMEN’S AND CHILDREN’S HEALTH EFFECTS ON BANGLADESH BY CONDUCTING AGE STRUCTURE POPULATION MODEL SIZE-DEPENDENT VIBRATION ANALYSIS OF CRACKED MICRO BEAMS REINFORCED WITH FUNCTIONALLY GRADED BORON NITRIDE NANOTUBES IN COMPOSITE STRUCTURES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1