Unsupervised texture segmentation applied to natural images containing man-made objects

X. Dai, J. Maeda
{"title":"Unsupervised texture segmentation applied to natural images containing man-made objects","authors":"X. Dai, J. Maeda","doi":"10.1109/ICCIMA.2001.970503","DOIUrl":null,"url":null,"abstract":"This paper presents a region-based unsupervised segmentation for natural images containing man-made objects. We propose a texture feature extraction to obtain more discriminating features. Statistical Geometrical Features (SGF) are used as texture features. The SGF of the original image and the smoothed image obtained from an anisotropic edge-preserving diffusion are combined for segmentation use. We also propose a modified segmentation algorithm which performs segmentation in four stages: hierarchical splitting, local agglomerative merging, global agglomerative merging and pixelwise classification. Local agglomerative merging combines segments locally, which will greatly reduce the time cost. We make some experiments to demonstrate the effectiveness of the proposed technique in the segmentation of natural images containing man-made objects. The reduction of computation time is also provided.","PeriodicalId":232504,"journal":{"name":"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.2001.970503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a region-based unsupervised segmentation for natural images containing man-made objects. We propose a texture feature extraction to obtain more discriminating features. Statistical Geometrical Features (SGF) are used as texture features. The SGF of the original image and the smoothed image obtained from an anisotropic edge-preserving diffusion are combined for segmentation use. We also propose a modified segmentation algorithm which performs segmentation in four stages: hierarchical splitting, local agglomerative merging, global agglomerative merging and pixelwise classification. Local agglomerative merging combines segments locally, which will greatly reduce the time cost. We make some experiments to demonstrate the effectiveness of the proposed technique in the segmentation of natural images containing man-made objects. The reduction of computation time is also provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于包含人造物体的自然图像的无监督纹理分割
提出了一种基于区域的包含人造物体的自然图像的无监督分割方法。我们提出了一种纹理特征提取方法,以获得更多有区别的特征。纹理特征采用统计几何特征(SGF)。将原始图像的SGF和各向异性保边扩散得到的平滑图像相结合进行分割。我们还提出了一种改进的分割算法,该算法分层次分割、局部聚类合并、全局聚类合并和像素分类四个阶段进行分割。局部凝聚合并是将部分进行局部合并,大大降低了时间成本。我们做了一些实验来证明所提出的技术在包含人造物体的自然图像分割中的有效性。还提供了减少计算时间的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acquisition of stair like structure by gift Data visualization tools for 3SAT instances An intelligent tutoring system for teaching and learning Hoare logic Consideration to computer generated force for defence systems Design and implementation of MPEG-4 authoring tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1