Accelerating Long Read Alignment on Three Processors

Zonghao Feng, Shuang Qiu, Lipeng Wang, Qiong Luo
{"title":"Accelerating Long Read Alignment on Three Processors","authors":"Zonghao Feng, Shuang Qiu, Lipeng Wang, Qiong Luo","doi":"10.1145/3337821.3337918","DOIUrl":null,"url":null,"abstract":"Sequence alignment is a fundamental task in bioinformatics, because many downstream applications rely on it. The recent emergence of the third-generation sequencing technology requires new sequence alignment algorithms that handle longer read lengths as well as more sequencing errors. Furthermore, the rapidly increasing volume of sequence data calls for efficient analysis solutions. To address this need, we propose to utilize commodity parallel processors to perform the long read alignment. Specifically, we propose manymap, an acceleration of the leading CPU-based long read aligner minimap2 on the CPU, the GPU, and the Intel Xeon Phi processor. We eliminate intra-loop data dependency in the base-level alignment step of the original minimap2 through redesigning memory layouts of dynamic programming (DP) matrices. This change facilitates the effective vectorization of the most time-consuming procedure in alignment. Additionally, we apply architecture-aware optimizations, such as utilizing high bandwidth memory on Xeon Phi and concurrent kernel execution on GPU. We evaluate our manymap in comparison with the extended minimap2 on a Xeon Gold 5115 CPU, a Tesla V100 GPU, and a Xeon Phi 7210 processor. Our results show that manymap outperforms minimap2 by up to 2.3 times on the overall execution time and 4.5 times on the base-level alignment step.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Sequence alignment is a fundamental task in bioinformatics, because many downstream applications rely on it. The recent emergence of the third-generation sequencing technology requires new sequence alignment algorithms that handle longer read lengths as well as more sequencing errors. Furthermore, the rapidly increasing volume of sequence data calls for efficient analysis solutions. To address this need, we propose to utilize commodity parallel processors to perform the long read alignment. Specifically, we propose manymap, an acceleration of the leading CPU-based long read aligner minimap2 on the CPU, the GPU, and the Intel Xeon Phi processor. We eliminate intra-loop data dependency in the base-level alignment step of the original minimap2 through redesigning memory layouts of dynamic programming (DP) matrices. This change facilitates the effective vectorization of the most time-consuming procedure in alignment. Additionally, we apply architecture-aware optimizations, such as utilizing high bandwidth memory on Xeon Phi and concurrent kernel execution on GPU. We evaluate our manymap in comparison with the extended minimap2 on a Xeon Gold 5115 CPU, a Tesla V100 GPU, and a Xeon Phi 7210 processor. Our results show that manymap outperforms minimap2 by up to 2.3 times on the overall execution time and 4.5 times on the base-level alignment step.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在三个处理器上加速长读对齐
序列比对是生物信息学的一项基本任务,因为许多下游应用都依赖于它。最近出现的第三代测序技术需要新的序列比对算法来处理更长的读取长度以及更多的测序错误。此外,快速增长的序列数据需要高效的分析解决方案。为了满足这一需求,我们建议利用商用并行处理器来执行长读对齐。具体来说,我们提出了manymap,这是一种基于CPU的长读对齐器minimap2在CPU、GPU和Intel Xeon Phi处理器上的加速。我们通过重新设计动态规划(DP)矩阵的内存布局,消除了原始minimap2基本级对齐步骤中的环内数据依赖。这一变化有助于对对齐中最耗时的过程进行有效的矢量化。此外,我们应用架构感知优化,例如在Xeon Phi上利用高带宽内存和在GPU上并发内核执行。我们将我们的manymap与Xeon Gold 5115 CPU, Tesla V100 GPU和Xeon Phi 7210处理器上的扩展minimap2进行比较。我们的结果表明,manymap在总体执行时间上比minimap2多2.3倍,在基本级对齐步骤上多4.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Express Link Placement for NoC-Based Many-Core Platforms Cartesian Collective Communication Artemis A Specialized Concurrent Queue for Scheduling Irregular Workloads on GPUs diBELLA: Distributed Long Read to Long Read Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1