Research Summary: Deterministic, Explainable and Efficient Stream Processing

Dimitrios Palyvos-Giannas, M. Papatriantafilou, Vincenzo Gulisano
{"title":"Research Summary: Deterministic, Explainable and Efficient Stream Processing","authors":"Dimitrios Palyvos-Giannas, M. Papatriantafilou, Vincenzo Gulisano","doi":"10.1145/3524053.3542750","DOIUrl":null,"url":null,"abstract":"The vast amounts of data collected and processed by technologies such as Cyber-Physical Systems require new processing paradigms that can keep up with the increasing data volumes. Edge computing and stream processing are two such paradigms that, combined, allow users to process unbounded datasets in an online manner, delivering high-throughput, low-latency insights. Moving stream processing to the edge introduces challenges related to the heterogeneity and resource constraints of the processing infrastructure. In this work, we present state-of-the-art research results that improve the facilities of Stream Processing Engines (SPEs) with data provenance, custom scheduling, and other techniques that can support the usability and performance of streaming applications, spanning through the edge-cloud contexts, as needed.","PeriodicalId":254571,"journal":{"name":"Proceedings of the 2022 Workshop on Advanced tools, programming languages, and PLatforms for Implementing and Evaluating algorithms for Distributed systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 Workshop on Advanced tools, programming languages, and PLatforms for Implementing and Evaluating algorithms for Distributed systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3524053.3542750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The vast amounts of data collected and processed by technologies such as Cyber-Physical Systems require new processing paradigms that can keep up with the increasing data volumes. Edge computing and stream processing are two such paradigms that, combined, allow users to process unbounded datasets in an online manner, delivering high-throughput, low-latency insights. Moving stream processing to the edge introduces challenges related to the heterogeneity and resource constraints of the processing infrastructure. In this work, we present state-of-the-art research results that improve the facilities of Stream Processing Engines (SPEs) with data provenance, custom scheduling, and other techniques that can support the usability and performance of streaming applications, spanning through the edge-cloud contexts, as needed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究综述:确定性、可解释和高效的流处理
信息物理系统等技术收集和处理的大量数据需要新的处理范式,以跟上不断增长的数据量。边缘计算和流处理是两种这样的范例,它们结合在一起,允许用户以在线方式处理无界数据集,提供高吞吐量、低延迟的见解。将流处理移动到边缘引入了与处理基础设施的异构性和资源约束相关的挑战。在这项工作中,我们展示了最先进的研究成果,通过数据来源、自定义调度和其他技术来改进流处理引擎(spe)的设施,这些技术可以支持流应用程序的可用性和性能,根据需要跨越边缘云上下文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cascade: An Edge Computing Platform for Real-time Machine Intelligence Exploring the use of Strongly Consistent Distributed Shared Memory in 3D NVEs Drone-Truck Cooperated Delivery Under Time Varying Dynamics DARTS: Distributed IoT Architecture for Real-Time, Resilient and AI-Compressed Workflows Graph Neural Networks as Application of Distributed Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1