{"title":"Starting and Resolving a Partitioned BRAIN","authors":"M. Paulitsch, B. Hall","doi":"10.1109/ISORC.2008.9","DOIUrl":null,"url":null,"abstract":"Time-triggered communication is a favored design strategy for safety-critical systems. However, the startup of time-triggered systems is a significant concern, since the time-line from which fault-tolerance is supported must be established in segmented mediums, e.g. multi-hop networks. The startup problems are particularly challenging since clique formation, i.e. the establishment of disjoint time-triggered communication sets, may be systematically induced. This paper presents an alternative startup solution based upon a braided-ring architecture called BRAIN (braided ring availability integrity network). Segmentation-induced cliques are particularly prevalent in this architecture, since each node presents a potential medium break. The described strategy dramatically improves startup performance in relation to current approaches by leveraging the cooperative action of adjacent nodes during startup and high-integrity data propagation.","PeriodicalId":378715,"journal":{"name":"2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2008.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Time-triggered communication is a favored design strategy for safety-critical systems. However, the startup of time-triggered systems is a significant concern, since the time-line from which fault-tolerance is supported must be established in segmented mediums, e.g. multi-hop networks. The startup problems are particularly challenging since clique formation, i.e. the establishment of disjoint time-triggered communication sets, may be systematically induced. This paper presents an alternative startup solution based upon a braided-ring architecture called BRAIN (braided ring availability integrity network). Segmentation-induced cliques are particularly prevalent in this architecture, since each node presents a potential medium break. The described strategy dramatically improves startup performance in relation to current approaches by leveraging the cooperative action of adjacent nodes during startup and high-integrity data propagation.