An Efficient Multi-Keyword Search Scheme over Encrypted Data in Multi-Cloud Environment

Heng He, Jiaqi Liu, J. Gu, Feng Gao
{"title":"An Efficient Multi-Keyword Search Scheme over Encrypted Data in Multi-Cloud Environment","authors":"Heng He, Jiaqi Liu, J. Gu, Feng Gao","doi":"10.1109/SmartCloud55982.2022.00016","DOIUrl":null,"url":null,"abstract":"Recently multi-cloud has become the main model of cloud computing. With the rapid development of cloud computing technology, users are increasingly concerned about data security in the cloud. To ensure data security, users encrypt private data and upload it to cloud servers. Nevertheless, it is challenging to search ciphertexts with keywords from large amounts of encrypted data of multiple cloud servers. Moreover, existing attribute-based searchable encrypted schemes have several limitations, such as inflexible access control policy, only supporting single or conjunctive keyword search, and low search efficiency. Therefore, we propose an efficient Attribute-based Multi-keyword Search scheme (AMSE) over Encrypted data in multi-cloud environment. AMSE leverages the high-performance Ciphertext-Policy Attribute-Based Encryption (CP-ABE) algorithm to achieve multi-keyword ciphertext search and fine-grained access control. By introducing a retrieval server, AMSE can efficiently and accurately search ciphertexts in multi-cloud. The security analysis and performance evaluation demonstrate that AMSE is secure, highly efficient, and well-suited for multi-cloud.","PeriodicalId":104366,"journal":{"name":"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 7th International Conference on Smart Cloud (SmartCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartCloud55982.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently multi-cloud has become the main model of cloud computing. With the rapid development of cloud computing technology, users are increasingly concerned about data security in the cloud. To ensure data security, users encrypt private data and upload it to cloud servers. Nevertheless, it is challenging to search ciphertexts with keywords from large amounts of encrypted data of multiple cloud servers. Moreover, existing attribute-based searchable encrypted schemes have several limitations, such as inflexible access control policy, only supporting single or conjunctive keyword search, and low search efficiency. Therefore, we propose an efficient Attribute-based Multi-keyword Search scheme (AMSE) over Encrypted data in multi-cloud environment. AMSE leverages the high-performance Ciphertext-Policy Attribute-Based Encryption (CP-ABE) algorithm to achieve multi-keyword ciphertext search and fine-grained access control. By introducing a retrieval server, AMSE can efficiently and accurately search ciphertexts in multi-cloud. The security analysis and performance evaluation demonstrate that AMSE is secure, highly efficient, and well-suited for multi-cloud.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多云环境下加密数据的高效多关键字搜索方案
近年来,多云已经成为云计算的主要模式。随着云计算技术的飞速发展,用户越来越关注云中的数据安全问题。为保证数据安全,用户将个人数据加密后上传到云服务器。然而,从多个云服务器的大量加密数据中搜索包含关键字的密文是一个挑战。此外,现有的基于属性的可搜索加密方案存在访问控制策略不灵活、只支持单个或联合关键字搜索、搜索效率低等缺点。为此,我们提出了一种高效的基于属性的多关键字搜索方案(AMSE),用于多云环境下的加密数据。AMSE利用高性能的cipher - policy Attribute-Based Encryption (CP-ABE)算法,实现多关键字密文搜索和细粒度访问控制。通过引入检索服务器,AMSE可以在多云环境下高效、准确地检索密文。安全性分析和性能评估表明,AMSE安全、高效,非常适合多云环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Impacts of JavaScript-Based Encryption of HTML5 Web Storage for Enhanced Privacy A Deep-Learning-Based Optimal Auction for Vehicular Edge Computing Resource Allocation TDH: An Efficient One-stop Enterprise-level Big Data Platform Survey of Research on Named Entity Recognition in Cyber Threat Intelligence A Semantic Segmentation Algorithm for Distributed Energy Data Storage Optimization based on Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1