{"title":"Distributed Deep Learning System for Efficient Face Recognition in Surveillance System","authors":"Jinjin Liu, Zhifeng Chen, Xiaonan Li, Tongxin Wei","doi":"10.1145/3503047.3503130","DOIUrl":null,"url":null,"abstract":"In view of the bandwidth consumption caused by data stream transmission in video analysis system and the demand for accurate online real-time analysis of massive data, this paper proposes a deep learning model framework for face recognition employed in the embedded system. Through data collaboration, the cloud could build a more complex data set with a small amount of uploaded data gathered by the end devices. And the framework collaboration makes sure that the fully-trained cloud model directly download or distillate knowledge to the end devices. Experiments show that the deep model not only realizes the real-time response and the accurate response of the cloud system, but also greatly reduces the bandwidth consumption caused by sample data transmission in the model training process.","PeriodicalId":190604,"journal":{"name":"Proceedings of the 3rd International Conference on Advanced Information Science and System","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Advanced Information Science and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503047.3503130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In view of the bandwidth consumption caused by data stream transmission in video analysis system and the demand for accurate online real-time analysis of massive data, this paper proposes a deep learning model framework for face recognition employed in the embedded system. Through data collaboration, the cloud could build a more complex data set with a small amount of uploaded data gathered by the end devices. And the framework collaboration makes sure that the fully-trained cloud model directly download or distillate knowledge to the end devices. Experiments show that the deep model not only realizes the real-time response and the accurate response of the cloud system, but also greatly reduces the bandwidth consumption caused by sample data transmission in the model training process.