Sentinel-1 results: SBAS-DInSAR processing chain developments and land subsidence analysis

R. Lanari, P. Berardino, M. Bonano, F. Casu, C. Luca, S. Elefante, A. Fusco, M. Manunta, M. Manzo, C. Ojha, A. Pepe, Eugenio Sansosti, I. Zinno
{"title":"Sentinel-1 results: SBAS-DInSAR processing chain developments and land subsidence analysis","authors":"R. Lanari, P. Berardino, M. Bonano, F. Casu, C. Luca, S. Elefante, A. Fusco, M. Manunta, M. Manzo, C. Ojha, A. Pepe, Eugenio Sansosti, I. Zinno","doi":"10.1109/IGARSS.2015.7326405","DOIUrl":null,"url":null,"abstract":"This work is aimed at describing the development of an efficient interferometric processing chain, based on the well-known advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) algorithm referred to as Small BAseline Subset (SBAS) technique, for the generation of Sentinel-1A (S1-A) Interferometric Wide Swath (IWS) deformation time-series. Due to the TOPS mode characterizing the IWS acquisitions, the existing SBAS processing chains was properly adapted with new procedures for efficiently handling the S1-A data. The developed SBAS-DInSAR chain has been tested on both S1-A and TOPS RadarSAT-2 interferometric dataset, clearly demonstrating the capability of the developed SBAS-DInSAR processing chain to effectively investigate land subsidence phenomena affecting large areas.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7326405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This work is aimed at describing the development of an efficient interferometric processing chain, based on the well-known advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) algorithm referred to as Small BAseline Subset (SBAS) technique, for the generation of Sentinel-1A (S1-A) Interferometric Wide Swath (IWS) deformation time-series. Due to the TOPS mode characterizing the IWS acquisitions, the existing SBAS processing chains was properly adapted with new procedures for efficiently handling the S1-A data. The developed SBAS-DInSAR chain has been tested on both S1-A and TOPS RadarSAT-2 interferometric dataset, clearly demonstrating the capability of the developed SBAS-DInSAR processing chain to effectively investigate land subsidence phenomena affecting large areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentinel-1结果:SBAS-DInSAR处理链发展和地面沉降分析
这项工作旨在描述一种高效干涉处理链的发展,该处理链基于著名的先进差分干涉合成孔径雷达(DInSAR)算法,称为小基线子集(SBAS)技术,用于生成Sentinel-1A (S1-A)干涉宽带(IWS)变形时间序列。由于IWS采集的特征是TOPS模式,现有的SBAS处理链被适当地调整为有效处理S1-A数据的新程序。开发的SBAS-DInSAR链已经在S1-A和TOPS RadarSAT-2干涉数据集上进行了测试,清楚地表明开发的SBAS-DInSAR处理链能够有效地研究影响大面积的地面沉降现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interferometric and polarimetric methods to determine SWE, fresh snow depth and the anisotropy of dry snow Usefulness assessment of polarimetric parameters for line extraction from agricultural areas DEM and DHM reconstruction in tropical forests: Tomographic results at P-band with three flight tracks Nationwide ground deformation monitoring by persistent scatterer interferometry MICAP (Microwave imager combined active and passive): A new instrument for Chinese ocean salinity satellite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1