Multi-aspect group formation using facility location analysis

Mahmood Neshati, H. Beigy, D. Hiemstra
{"title":"Multi-aspect group formation using facility location analysis","authors":"Mahmood Neshati, H. Beigy, D. Hiemstra","doi":"10.1145/2407085.2407094","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an optimization framework to retrieve an optimal group of experts to perform a given multi-aspect task/project. Each task needs a diverse set of skills and the group of assigned experts should be able to collectively cover all required aspects of the task. We consider three types of multi-aspect team formation problems and propose a unified framework to solve these problems accurately and efficiently. Our proposed framework is based on Facility Location Analysis (FLA) which is a well known branch of the Operation Research (OR). Our experiments on a real dataset show significant improvement in comparison with the state-of-the art approaches for the team formation problem.","PeriodicalId":402985,"journal":{"name":"Australasian Document Computing Symposium","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Document Computing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2407085.2407094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we propose an optimization framework to retrieve an optimal group of experts to perform a given multi-aspect task/project. Each task needs a diverse set of skills and the group of assigned experts should be able to collectively cover all required aspects of the task. We consider three types of multi-aspect team formation problems and propose a unified framework to solve these problems accurately and efficiently. Our proposed framework is based on Facility Location Analysis (FLA) which is a well known branch of the Operation Research (OR). Our experiments on a real dataset show significant improvement in comparison with the state-of-the art approaches for the team formation problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用设施位置分析的多方位组团
在本文中,我们提出了一个优化框架来检索最优专家组来执行给定的多方面任务/项目。每项任务都需要一套不同的技能,指派的专家小组应该能够共同涵盖任务的所有必要方面。我们考虑了三种类型的多方位组队问题,并提出了一个统一的框架来准确、高效地解决这些问题。我们提出的框架是基于设施位置分析(FLA),这是运筹学(OR)的一个众所周知的分支。我们在真实数据集上的实验表明,与团队形成问题的最新方法相比,我们的方法有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the magic of WAND Classifying microblogs for disasters Using eye tracking for evaluating web search interfaces Power walk: revisiting the random surfer Efficient top-k retrieval with signatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1